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Abstract

Reducing the Cost of System Administration of a Disk Storage System Built from
Commodity Components

by

Satoshi Asami
Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor David A. Patterson, Chair

This dissertation explores how to reduce the system administration cost of disk storage
systems. There are several reasons why reducing the operator’s burden is the key to success of
large storage systems. One is that the cost of system administration usually dominates the budget
of storage systems. Another is that an operator error on storage systems can easily have disastrous
results. In the field of physiology and psychology, there have been studies that show reducing mental
and physical stress on the operator is crucial in preventing human errors.

This dissertation describes Tertiary Disk, a large-scale disk array system built from com-
modity components, and how we evaluated the feasibility of its design. Instead of incurring the cost
of custom hardware, we attempt to solve various problems by design and software. Tertiary Disk
is a cluster of storage nodes connected by switched Ethernet. Each storage node is a PC hosting a
few dozen SCSI disks, running the FreeBSD operating system. The system is used as a web-based
image server for the Zoom Project in cooperation with the Fine Arts Museums of San Francisco.
Our system is fully redundant in both hardware and software, and is designed to avoid a single point
of failure.

There are several approaches to lower the human cost of system administration. One is
to make the system as autonomous as possible. I have designed a self-maintenance extension to
the operating system to make the system run continuously in the event of failures. There are also
several other improvements to the system to make the operator’s job easier.

Finally, we will prove the feasibility of our system by evaluating it by simulation. Failure
data that has been collected on Tertiary Disk over the course of several years were used to design
an event generator. The second program, a simulator, models the system using a directed acyclic
graph and computes its availability by solving a connectivity problem. The results have shown that
our system performs as expected with the current set of parameters, and also expands nicely into
the future.

Professor David A. Patterson
Dissertation Committee Chair
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Chapter 1

Introduction

Ten years ago, large disk storage systems were built as specialized, large-iron server sys-
tems. They combined the fastest central processor units (CPU) available on workstations with
special buses and expensive memory systems. Server price tags were much higher than those of the
average workstation. People were still content since all computers were expensive and they needed
only one of these servers for dozens of workstations.

Since then, prices of computer parts have been dropping rapidly, especially in the past
few years. For instance, the cost of disk per unit capacity, usually measured in dollars or cents per
megabyte, has been steadily dropping at the rate of 60–100% per year in since 1991. Decreases in
cost of semiconductor memory, CPU, and other parts are similarly significant.

1.1 Have Computers Really Become Cheaper?

However, the prices of computers haven’t really gone down—we now simply have access
to much better components for the same price. Ten years ago, you could get a decent computer for
$1,000, and you can still get a decent computer for $1,000 today; the only thing that changed is the
meaning of the the word “decent”. Table 1.1 shows a comparison of a better-than-average PC that
you can purchase for $2,000 in late 1991 and late 1999. The 1991 PC was the first PC I purchased
when I came to the United States. There are some PCs now that sell much cheaper than $2,000, but
they are not sufficient as building blocks for storage systems so I decided to not list them here.

To summarize, we can purchase a PC that has 32 times as much main memory, 85 times
as much disk space and 128 times as much video memory for about the same price as we did
eight years ago. The monitor is now capable of redrawing more than twice as many scan lines per
second. Comparing the speed of computers is harder, as there are many factors that affect thereal
performance—for instance, you can’t just say that the 600MHz Pentium III in 1999 is 18 times faster
than the 33MHz 80386 in 1991 just by comparing the clock rates, as they have different registers,
instruction sets, cycles per instruction, and so on [HP96a]. However, from the numbers listed in
Table 1.1 we can see, for instance, that the main system bus is capable of transferring eight times
as much data per second and the disk sequential transfer speed has improved by a factor of 30. The
improvement in speed of individual components appear to be by a factor of around 10 to 30 times.

It is also notable that the disk subsystem has improved significantly. The individual disks
have increased their size by a factor of two magnitudes, and the data transfer rate of the bus has
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Subsystem Specification
Category Name 1991 1999

CPU Class 80386 Pentium III
Internal clock rate 33MHz 600MHz
External clock rate 33MHz 100MHz
External bus width 32 bits 64 bits

Cache On-chip (none) 32KB
Off-chip 64KB 512KB

Main memory Type DRAM SDRAM
Size 4MB 128MB

System bus Type ISA PCI
Clock rate 8.3MHz 33MHz
Width 16 bits 32 bits

Disk interface Type IDE SCSI
Bus width 8 bits 16 bits
Max. transfer speed 3MB/s 160MB/s
Devices per bus 2 15

Hard disk Size 0.12GB 10.2GB
Sequential access speed0.3MB/s 10MB/s
Average seek time 15ms 7ms

Video card Video RAM size 0.25MB 32MB
Monitor Screen size 14 inch 17 inch

Max. horizontal sync 36kHz 82kHz

Table 1.1: Comparison of a $2,000 PC in 1991 and 1999



3

increased by a factor of 50. It is also now possible to attach more disks to a single bus.

1.1.1 Building Large Storage Systems

Given this new situation, it appears it is now feasible to build very large disk storage
systems using commodity hardware. The PCI (Peripheral Component Interconnect) bus can transfer
up to 132MB/s in burst mode and can be chained by PCI expansion boxes to an arbitrary depth to
connect dozens of expansion cards to a single CPU [Sha95]. The SCSI (Small Computer Systems
Interface) bus can connect up to 15 devices to a single host adapter and transfer 160MB/s total
[X3T]. Combined with the expandability of the PCI bus, it is now possible to connect hundreds
of disks to a single PC without using any specialized equipment. Although still behind in floating-
point operations, today’s PCs have enough integer processing power to put to shame server systems
of a decade ago. The Tertiary Disk project, which I will explain in detail in Chapter 3, has built one
such system entirely from commodity components [TAAP98].

1.1.2 System Administration Cost

On the other hand, the cost of administering storage systems has remained high over the
years. For instance, a 1993 study by Strategic Research Corp. shows the annual cost of system
administration of storage systems is almost three times that of the cost of system hardware itself
[SR93]. Without significantly reducing the cost of system administration, any benefit of using
commodity hardware to build storage systems will quickly diminish, especially if we are to build a
system with a large number of disks to take advantage of the new interfaces, instead of purchasing
an expensive turnkey solution like a hardware RAID box.

1.1.3 Our Approach

Our solution to this challenge is to make the storage systemself-maintaining[ATP99].
Instead of having someone constantly look after the system, possibly with an around-the-clock
pager as seen on some installations, our system is designed to mask problems and run continuously
even when there are several independent component failures. The system administrator’s job is only
to come in for scheduled visits, for instance, once per week, to replace the failed components. Such
mode of operation will also reduce the possibility of human errors, as people working during normal
hours are less likely to commit errors than those who are paged and have to drive to work in the
middle of the night. Indeed, Gray found that operator errors are as plentiful as hardware errors, so
this scheme will improve availability as well [Gra90]. We also propose another possibility, with
an operator with a pager but without the obligation to come in immediately—if the page arrives
after normal work hours, that person can just show up next morning at 9 A.M. We will show that,
with our design, such mode of operation will result in very good system availability, without adding
significantly to the cost.

The main application of our system is a web server holding image data for objects of art.
In that context, we have decided to adopt a policy called “repair by reload”. For any single failure,
our goal is to mask the failure within five seconds so that a retry by the client will succeed. The
reason we picked five seconds is to make sure it is short enough so that if we can mask the problem
within that time period, users will get the correct web page when they get impatient and hit the



4

reload button on their browsers. Because of the nature of the Internet, such short-term failures
are likely to be viewed as transient problems on the network users experience every day, rather
than a problem on our end. It is virtually impossible for users to distinguish between intermittent
network problems and very short server outages.

In our application, end users will not issue any writes, which also simplifies our task. We
have used the approach to mirror all the data that is required for day-to-day operation. The design
issue then simply becomes how to quickly detect failures and reroute user requests to the backup
copy.

In addition to making the system self-maintaining, I have explored several other methods
to reduce the cost of system administration. For instance, one important aspect of a self-maintaining
system is that it can reboot quickly—the longer it takes to reboot, the larger the window of vulner-
ability and the less chance it will continue running without human intervention. By combining
several techniques, I was able to reduce the boot time from 22 minutes to about 1 minute.

1.1.4 Applicability

Although some aspects of our design benefits from the read-mostly nature of the appli-
cation and our position as a web server, we are hardly alone in providing such service. There are
literally hundreds of large web sites on the Internet that specialize in read-mostly information con-
tents, as well as more traditional anonymous ftp servers and gopher servers. To extend the horizon a
little, the read-mostly nature is common in many other types of large storage systems such as certain
kinds of database servers as well.

1.2 Outline of Dissertation

This section outlines the thesis and lists its overall results by chapter. The rest of this
chapter lists the related work in the field. Chapter 2 expands on this chapter and illustrates the
motivation behind the research.

The architecture of the system we are using for the experiment and the main application
is illustrated in Chapter 3. The research was conducted on a cluster of PCs built by the Tertiary
Disk group [TAAP98]. The system consists of 24 PCs and 364 8GB disks for a total raw capacity of
3.2TB. Four of the machines are various frontend and infrastructure servers; the disks are connected
to the other 20. The disk servers are in two different configurations; the “disk-heavy” set with 35
disks per machine, and a “disk-light” set that has 16 disks per machine.

All the machines run the FreeBSD operating system [FB93]. I have been working with the
developers of the FreeBSD project who have been helpful in fixing bugs and making enhancements
to the system to make it suitable for use as a large-scale storage system. We explain and evaluate
the applicability of such improvements to other systems in Chapter 3. They are also compared to
similar methods proposed elsewhere.

Our main application is an art image database server. Cooperating with the Fine Arts
Museums of San Francisco, we have been offering pictures of objects of art through their search
engine [TAP+98]. Our site holds large versions of the images that do not fit on their disk.

In Chapter 4, we clarify the concept of self-maintainability and explain how we approach
the problem. The word “self-maintaining” has different meanings depending on the point of view
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of the two groups that interact with storage systems: users and system administrators. Users do not
know what is going on inside the system; they just expect the system to be “up” at all time and will
get easily annoyed if it isn’t. Depending on the application, there are various types of users, with
different requirements. For a public service site such as ours, it is essential to keep user annoyance
to a minimum as unhappy users may never come back.

The system administrators are generally more understanding than the end user to the prob-
lem of the system—some of them are even architects of the systems themselves—but the amount of
the time these people have to spend directly affects the cost of keeping the system up and running.
Also, the more pressure you put on this person, the more likely there will be human errors, and
human errors by system administrators can have disastrous results. Thus, it is very important to
ease the job of the system administrator through whatever means possible.

We validated our system using a simulator. There were three steps in our validation
methodology: collecting data, running simulation and evaluation. The first step is explained in
Chapter 5, while the other two are detailed in Chapter 6. The data we needed to collect fell in two
categories. One is failure information: the symptoms, error frequencies, and so on. The other is
repairing information, i.e., how long it takes to conduct a repair on a certain component.

After analyzing the data, they were fed to an event-driven simulator to predict the behav-
ior of the system over a longer period of time. The simulator builds a simple directed acyclic graph
(DAG) to represent the system and checks the connectivity whenever there is a change to one of
the components’ state. We also changed some parameters to explore the design space. The param-
eters include numerical ones, such as repair interval and degree of redundancy, and qualitative ones
such as the importance of double-ending. The results were compared with data available for other
systems to prove the validity of our design.

Chapter 7 summarizes the results and observes future prospects of the research topic. This
chapter also gives an insight on what we would have done differently if we were to build a similar
system again.

1.3 Related Work

I have listed related work in the field of fast recovery, system administration of clustered
systems, in particular monitoring and diagnosis, and large disk storage systems.

1.3.1 Disk Storage Systems

There are three classes of disk storage systems that are related to my research; hardware
RAID, high-availability server systems and network-attached storage systems.

Hardware RAID

RAID (Redundant Array of Inexpensive Disks) is a method of building large disk stor-
age systems from smaller disks [CGP+88, Gib92]. There are six levels of RAIDs, 0 through 5,
differing in redundancy schemes. Most widely used are RAID-0, which is simple striping with no
redundancy, RAID-1, which is mirroring, and RAID-5, which is block-interleaved parity without a
dedicated parity disk. There are many companies—EMC, Sony, IBM, BoxHill, StorageTek, Sun,
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DEC, to name a few—selling RAID-based systems on the market. There are more than 50 com-
panies and 100 products in the RAID Consortium, and collectively they ship billions of dollars of
systems each year.

The problems with current RAID systems are twofold. One is price, in that custom hard-
ware required to build these boxes cost much more than commodity components as we are using.
The other is expandability. These boxes have a fixed upper limit on number of disks, usually top-
ping out at several dozen to a few hundred gigabytes, and will force the user to purchase another box
when the limit is reached. However, increasing the number of RAID boxes opens up a whole new
set of problems, as the reliability decreases linearly with the number of boxes while the maintenance
cost and complexity increases.

As mentioned throughout this thesis, these are the problems we are trying to solve with
our system.

High-Availability Servers

Many vendors offer complete server systems with a large storage capacity. Tandem has a
long history in this field. Their NonStop servers are fully redundant and have hot-swappability of
most components, thus it is not necessary to power it down even during repairs [BBC+90]. Their
architecture, called “shared nothing”, has no single point of failure, i.e., any one component can
fail and the system will still function. Jim Gray did a study on their availability in the late 1980’s
[Gra90].

Their software uses a design called “process pairs” in which a primary process, doing all
the work during normal operation, periodically sends synchronization messages to a backup process
[Bar81, Tan97a]. When the primary process, or the hardware that supports it, fails, the backup
process will take over. Since the backup process does not have to doing any heavy processing,
there is very little overhead during normal operation. This design is similar to the way our frontend
servers back up each other on a peer-to-peer basis.

Their system administration suite is called TMDS (Tandem Maintenance and Diagnostic
System) [Tan97b]. It has an auto-diagnostics feature that uses an artificial intelligence program
based on past knowledge, which compares the symptoms of the system to known failure modes and
tries to identify the failures. TMDS can optionally dial up Tandem’s technical support center with a
report which Tandem technicians can consult while running remote diagnostics of their own.

Network-Attached Storage

Network Appliance [NA92] sells network servers built around Digital’s Alpha chip. Their
NFS servers are advertised to outperform a 4-way P6-200MHz Windows NT system by 2 to 10
times. They use RAID-4, block-interleaved parity with a dedicated parity disk, with NVRAMs to
increase performance. They have a filesystem that can recover from crashes very quickly by using
checkpointing and roll-forward logs.

Microsoft Tiger is a video server built from commodity PCs which they call “cubs”
[BBD+96, BFD97]. Their goal is to tolerate the failure of any one cub or disk without notice-
able degradation of service. They use mirroring for backing up data, since they cannot tolerate the
runtime reconstruction overhead of parity-based redundancy schemes. They place the “primary”
copies of the data on the outer tracks of the disks for better performance, and the backup copies
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are declustered to avoid loading a single machine or disk during failures. Tiger distributes all files
across all disks on all cubs for maximum striping performance, but this method has a drawback of
having to reconstruct data on the entire system when a new disk is added. This reconstruction is not
very expensive as there is no parity calculation involved, but the system has to be shut down for a
few hours while the reconstruction takes place.

A single controller, which has the only IP address known from outside of the cluster,
serves as the entry point from clients. No image data passes through the controller so it is not likely
that they will become performance bottlenecks. This design, with a machine with a single IP address
known to the outside world serving as a frontend that does not handle data, is similar to our system,
except we have two frontend machines backing up each other for extra availability.

They take great care to ensure that sufficient bandwidth is available during the entire
course of the playback, and will delay start of playback if necessary. They use a distributed sched-
ule management protocol for scalability. Each cub has a partial, potentially outdated view of the
schedule which they pass around, updating it along the way. Cubs use deadman protocol for fault
detection—each cub sends periodic ping to the cub on its right.

Petal is another network-attached storage system [LT96]. Petal is a collection of dis-
tributed servers, each containing multiple disks. They use a method calledchained declustering
to avoid having the load increase 100% on a machine when its mirrored counterpart fails [HD89].
Petal is a block server. The authors of Petal have also designed a distributed file system called
Frangipani to run on top of Petal [TML97].

CMU’s Network Attached Secure Disks (NASD) is another example of network attached
storage [GNA+96, GNA+98]. Their disks have more intelligence than current disks, and their focus
is on security and safety of data.

A final sample is xFS, a combination of network striping and a Log-structured Filesystem
(LFS [SBMS85]), which is a method of reducing the disk latency on random writes [ADN+95].

Our system avoids the complexity of distributed filesystems by using HTTP redirects and
IP masquerading to distribute user requests and mask failures. In addition to Tiger, this approach
is also similar to the initial method employed by the Inktomi project at UC Berkeley, which was a
large search engine built from a small cluster of Sun workstations.

There have been many studies that express complex systems using a graph. For example,
Ren and Dugan proposed a method to dynamically trim fault trees to analyze system behavior
efficiently [RD98]

1.3.2 Fast Recovery

Mary Baker has studied fast reboot of systems after a crash for her Ph.D. thesis [Bak93].
Most of her work is about distributed state recovery of the Sprite operating system, but she has also
done considerable amount of work to streamline the normal UNIX start-up procedure to improve
the reboot time. Her thesis is that a system that recovers very quickly can be as available as a system
that crashes less frequently but recover more slowly. I have made similar improvements to our boot
process as can be found in section 3.3.2.
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1.3.3 Monitoring and Diagnosis

Eric Anderson of the Network of Workstations (NOW [ACPtNT95]) Project has been
studying several aspects of system administration of clusters [And97]. His most recent work in-
troduces a system called CARD (Cluster Administration using Relational Databases) [AP97]. He
proposes using relational databases to build an extensible monitoring system. CARD uses a hybrid
push-pull protocol to collect data from individual machines. His emphasis is on monitoring and
diagnosis.

Swatch [HA93] is a push system, in which each machine sends a periodic update to a cen-
tralized server. Swatch modifies UNIX programs to emit more detailed logs, especially pertaining
security information. It then usessyslog to collect the information and send them to the server.
They provide a collection ofperl scripts to filter the logs to make it human-readable. Swatch
also allows administrators to define their own functions using scripts to focus on some parts more
carefully.

TkIned [Sch95] is another centralized system. TkIned has an extensive collection of meth-
ods for gathering data. Because it is distributed with complete source code, it can be extended by
modifying the program. Since the data is not accessible outside of the TkIned program, new mod-
ules either have to be added to TkIned, or have to repeat the data gathering. TkIned provides simple
support for visualization and does not aggregate data before displaying it. TkIned’s centralized pull
model limits its scalability.

Pulsar [Fin97] usespulse monitors—small Tcl/Tk [Ous94] scripts–to collect information
about systems. If the measured value is not within the predefined bounds, a report is sent to a central
server. Pulsar is extensible but not fault tolerant due to its centralized design. We are using Tcl/Tk
and its extension Expect for some of our system administration tools.

Nisha Talagala of the Tertiary Disk Project has studied the failures we encountered on our
system as part of her Ph.D. thesis [Tal99]. She has concentrated on six months of the logs from the
system and has analyzed them in detail. I have done a similar analysis in Chapter 5 for a longer
period of time and a different emphasis as a basis of my simulation.

SCSI-3 has a new feature called SCSI Environmental Services (SES). It can be used to
monitor information such as status of enclosure power supply or fan and temperature of various
components, as well as send commands to control devices such as enclosure buzzers and LEDs. It
would have been useful for our project if it were available when we built the prototype.

1.3.4 Self-Management of Storage

Most of the literature that deal with reducing the cost of system administration of stor-
age accomplish the goal by automated management of storage devices. Although the emphasis of
this thesis is not in that aspect of system administration, some of the most prominent projects are
mentioned here as we share the common goal of reducing the system administrator’s burden.

The Storage Systems Program (SSP) at HP is working on a system called “self-management”
of storage [BGM+96]. Their focus is on automatic assignment of storage devices; humans do not
have to worry where to put what. Their prototype system is capable of assigning several thousands
of objects to devices in a few minutes.

Sun’s Jini makes devices, including disks, identify themselves as part of their automatic
component discovery paradigm [Wal98]. The devices either have enough intelligence built in them
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to be able to identify themselves to the clients, or they will download the drivers from a server.
There is also a recent project in Sun called Jiro, which defines a storage management interface
to let components manufactured by different vendors cooperate to provide an easily manageable
environment. Their draft is currently undergoing a review every two months or so [Jir99].

MicroSoft’s Windows 95/98 have an “autorun” feature on CD-ROM drives, in which a
special file is checked when a CD is inserted and is run automatically when it is found. This
mechanism is similar to our “script” approach of setting up disks mentioned in Section 3.3.2.

1.4 Research Issues/Contributions

To summarize, these are the contributions of this research:

� Analyzing and evaluating various methods to reduce system administration cost of large stor-
age systems

� Designing and implementing a self-maintaining storage system

� Several small but helpful enhancements to the operating system to make the system easier to
manage

� A guide to designing systems that recover quickly

� Cataloging and analyzing the component failures we have seen over two years the prototype
has been in operation

� An evaluation of the reliability of our design by simulation and exploration of the design
space

� Insights into the relationship between system availability and the reliability of a single disk

� Insights into the relationship between system availability and the frequency of visits for repair

� Use of DAG to represent system to simplify simulation of availability

� A list of concerns when building large-scale storage systems from commodity components
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Chapter 2

Motivation

This chapter explains further why reducing the burden on the system administrator is
important for storage systems. The point we would like to emphasize is that the system will be
cheaper, safer, and more available if it can mostly manage itself rather than rely on being watched
by a human operator.

2.1 Overview

Most storage systems today aread hoccollection of components, growing over the years
as the organization’s needs increase. The two most common methods for protection against data
loss are backups and redundancy. I will briefly overview them here, focusing on the system admin-
istrator’s point of view. The type of failures they protect the system from is also illustrated.

2.1.1 Backups

Backups are typically done to magnetic tapes. Tapes have very low unit cost, moderate
bandwidth and slow random access. These characteristics make them ideal for backups since the
backup tapes are usually written in one pass and almost never read back.

The reasoning behind doing backups are twofold. One is to safeguard against hardware
failures that result in data loss. The other is to help recover data from human errors.

Hardware Failures
If the storage system suffers a crash, the operator can recover the filesystem from backup
tapes. In some organizations, the range of failures to safeguard against also includes catas-
trophic disasters—the only way to prevent losing all data when there is a fire in the computer
room is to make a copy of data and send it to a physically remote location. The cheapest way
to accomplish this kind of redundancy is to ship full backup tapes to another site periodically.

The system administrator usually does not have to spend much time making backups after
the initial setup, although the amount of daily tape-changing that has to be done depends on
the characteristic of the tape backup system. For instance, a large organization with a tape
library can have fully automated daily backups; a smaller one with a stacker might require an
operator to change tapes daily.
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Human Errors
Since few filesystems in existence today offer versioning support, even if the storage system
functions exactly as designed without any failures, users can still “lose” files because of their
own mistakes. By having a backup done periodically, the system administrator can manually
recover at least some version of the lost file—if backups are done daily, it will probably be
yesterday’s version.

Recovering from human errors could be a much more time-consuming process for the system
administrator, as the user might not even know when the file was last written. Given infor-
mation such as “I think I deleted a file namedhandler.c in this directory last week”, the
operator has to go through several tapes trying to find the latest version of the file in question.
The situation is further complicated when the system has incremental backups, since yester-
day’s version of the file is not necessarily found in yesterday’s daily backup tapes—it could
have been written months ago and therefore only show up in the last full backup tape set.

Again, the amount of time the operator has to spend depends on the system. One with a tape
library and a good backup management software might make answering above requests a
one-line command; others might require the operator to manually go back and forth between
the terminal and the tape unit and issue several commands to find the right version of the files.

Note that even with backups, some data loss is inevitable. In particular, there is no way
to get back modifications done since the last backup. Also, backups have no effect on system avail-
ability in an event of hardware failure except that it will help restart the system quicker. Basically,
the system will be down until the operator comes in and restores the filesystem.

2.1.2 Redundancy

There are many ways to build disk storage systems with some degree of redundancy to
prevent data loss when hardware failures occur. The most common approach, called RAID (Redun-
dant Array of Inexpensive Disks), is a method of building large disk storage systems from smaller
disks. There are six levels of RAIDs, 0 through 5, differing in redundancy schemes. Here are brief
descriptions of most commonly used RAID levels.

RAID-0
Level 0 is simple striping. Obviously, this is not “redundant” at all; it is included in RAID
levels just as a reference point. RAID-0 is optimal for non-essential data where read/write
speed is most important, as this suffers from no overhead due to redundancy-based protection
schemes.

RAID-1
Level 1, ormirroring, takes data on one set of disks and makes identical copies of them on
another set. RAID-1 can tolerate multiple failures as long as one of the disks is alive on all
mirror pairs. RAID-1 has a 100% cost penalty as the system can only hold half the data it
would without redundancy. There is also a penalty on writes, since all data blocks have to be
written on two disks instead of one.

RAID-5
Level 5, block-interleaved parity without a dedicated parity disk, offers a good balance of
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performance and cost. WithN disks in a group, the cost penalty is(1=N � 100)%. Writing
to RAID-5 stripes can be very slow if it involves random accesses, since each write has to be
done as two reads (original data, original parity) and two writes (new data, new parity). The
performance suffers greatly when one of the disks fails, as many operations will now require
the system to access(N � 1) disks on anN -disk group. Recovery is time-consuming, as
contents of all(N � 1) disks have to be read to reconstruct the failed disk.

In addition to these traditional RAID levels, there are redundancy schemes that combine more than
one RAID level, such as RAID 0+1, and those that use a more complex algorithm to protect against
multiple disk losses in a single redundancy group, such as P+Q RAID.

There are many manufacturers selling RAID-based systems on the market. There are
more than 50 companies and 100 products in the RAID Consortium, and collectively they ship
billions of dollars of systems each year.

In addition to hardware RAID, some systems implement RAID in software. They are in-
herently slower than hardware RAID but require no extra hardware and therefore are much cheaper.
Many operating systems have software RAID support, either as a standard feature or an add-on
module, sometimes supplied by a third-party vendor.

In summary, RAID will safeguard against certain type of hardware failures, in particular,
a certain number of disk failures, but not others. They do not provide protection against human
errors in ways backups do. RAID systems have good availability as long as the failures are within
their design specs.

Administering RAID systems are generally easier but human operators still need to take
steps to help the system recover. Depending on the design of the system and user interface, manag-
ing spare disks can be a time-consuming task.

2.2 The Impact of System Administration

There are several reasons why system administration is the key to the success of a large
storage system. One is that the cost of system administration usually dominates the budget of storage
systems. Without cutting down the system administration cost, it will not be possible to reduce the
overall cost of storage systems significantly. Another is that the impact of bad or nonexistent system
administration for storage systems will negatively affect the organization in many ways.

2.2.1 Comparison with Hardware Cost

The cost of computer hardware has been dropping steadily for the past few decades. How-
ever, the cost of administering storage systems has remained high, as growth in demands for storage
has exceeded the capacity increase of a single disk, making the systems more complex than before.
For instance, as mentioned earlier, a 1993 study by Strategic Research Corp. shows that the average
annual cost of system administration of storage systems is almost three times that of the cost of
system hardware itself [SR93]. Amdahl’s law suggests that, without significantly reducing the cost
of system administration, any benefit of using commodity hardware to build storage systems will
completely diminish [HP96b]. For instance, if the system administration cost is three times that
of hardware cost, halving the hardware price will only save 12.5% of the overall cost; even if the
hardware price can be reduced to zero, the savings will only be 25% for the overall cost.
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Note that their study is already targeting fairly expensive storage systems, as most or-
ganizations surveyed were using large fileservers or hardware RAID boxes. For low-cost storage
systems such as ours, the ratio of system administration against hardware cost is even higher.

2.2.2 The Risk Factor

The importance of system administration transcends that of the salaries of the system
administrators, as the system can do only so much to safeguard against operator errors. In general,
it is very easy for an operator to make a mistake that will cause a lot of data to be lost or the system
to be unavailable for an extended period of time. The “routine” part of the job of an operator,
the everyday work that doesn’t involve repairs and other non-standard operations, is generally not
very dangerous—it is possible to safeguard against typical mistakes made during those times fairly
effectively by normal means such as backups. However, the “emergency” work that needs to be
done by system administrators has a much higher risk than normal operations for several reasons.

Vulnerability
The system is already in a vulnerable state when it is being repaired. For instance, consider a
RAID-5 volume with a failed disk. If the operator replaces one of the good disks instead of
the faulty one and then runs the reconstruction script, the entire dataset could be lost. Another
example is recovering a system from backup tapes. If the operator writes to the tapes instead
of reading from them, all data in them will be lost irrecoverably.

These may seem like unlikely events, but stranger things happened in real life. For instance,
in our fully mirrored system, I managed to lose an entire dataset by replacing the wrong disk
during a repair and then running the copy in the wrong direction. Moreover, the point is not
about how likely it is for these events to happen—it is that the system is in a vulnerable state,
and a simple error by the human operator can cause a lot more damage when the system is
down to one last copy of good data.

Familiarity
System administrators don’t get to practice doing these out-of-routine work because of the
rare nature of the problems. Operators either follow written manuals or improvise along the
way, and both of these methods are prone to mistakes if the person is not familiar with the
actions.

Repair Hours
A system administrator who has just been called in by a pager in the middle of the night is
more likely to make mistakes that one that conducts repairs only during regular work hours.
This lack of sleep was one of the factors that contributed to the egregious disk copying mistake
I mentioned earlier.

There have been many research in the field of physiology and psychology on the subject
of sleep deprivation and human performance. In Mullaney et al. [MKF83] and Angus and
Heslegrave [AH85], researchers confirm our intuition, that people are less likely to perform
tasks correctly and efficiently after a long period of work and also during normal sleeping
hours.
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Hockey et al. [HWS98] conducted a series of tests in which operators were asked to monitor
the state of a complex machinery control system and make necessary adjustments to keep the
system functional. Other than the expected result in which operators without enough sleep
did not perform as well, they found an interesting tendency, in which sleep-deprived subjects
tended to exhibitreactivebehavior rather than perform preventive, model-based strategy in
dealing with problems. To quote a sentence from their conclusion, “Operators make more
frequent interventions in order to stabilize the system when faults occur, sometimes without
a clear idea of what is wrong.” It is worth pointing out that this kind of careless reflective
actions is very dangerous on a storage system in a vulnerable state, and can easily lead to data
loss.

In another study, Fairclough and Graham [FG99] found that sleep deprivation is similar to
alcohol consumption in terms of having a detrimental effect on subjects’ driving ability, al-
though one notable difference was that sober but sleep-deprived subjects knew that their per-
formance was suffering.

Mental Pressure
The operator will be under mental pressure to repair a system if it is already down and it has
to be brought up as soon as possible. Under such mental stress, people are more likely to
make mistakes they won’t make without pressure.

Psychologists have been studying the effects of human presences for over a century. The ear-
liest experiment in this topic was done by Triplett in 1898. Studies in the first half of the 20th
century offered conflicting results as to whether human presences help or hurt performances.
In 1965, Zajonc attempted to classify experiments to explain the differences—his conclu-
sion was that simple, repetitive and well-practices tasks are helped by the presence of other
humans, while more complex tasks that require thinking and experimenting are inhibited—
the person was found to be more prone to errors when there were others observing the task
[Zaj66].

Since Zajonc’s paper, there have been many attempts to verify or disprove his arguments, or
offer a different explanation for the disparity; for a summary, see Paulus’ book [Pau89]. They
all agree that complex tasks are disturbed by the presence of others. We can deduce from
these results that the knowledge that there are users who are patiently waiting for the system
to be repaired can make the operator to make mistakes the person otherwise won’t make.

The problem illustrated here is that the system administrator is more likely to make errors
when they can be least afforded, which is obviously not a desirable situation. We think the self-
maintaining system will improve the situation, and thereby improve availability.

2.2.3 Availability

A system that relies on a human operator to function continuously will not be as available
as one that maintains itself. A system without enough redundancy, even with an operator with an
around-the-clock pager that can be called in even during the middle of the night, cannot be expected
to recover in a few minutes, let alone a few seconds like our design. It usually takes much longer
for a human operators to repair problems than machines do [GS91].
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2.3 Our Approach

I am proposing a “self-maintaining” approach to system administration, in which the stor-
age system maintains itself with only minimal help from a human operator. Instead of having
someone constantly on call look after the system, our system is designed to mask problems and run
continuously even when there are several independent component failures. The system administra-
tor’s job is only to come in for scheduled visits, for instance, once per week, to replace the failed
components.

As administration is most of the cost in running a large server, such a reduction will also
save a great deal of money. In 1999, a system administrator’s salary is around $100,000 per year,
plus benefits adding another $20,000 per year. Suppose there is an organization that hires such a
person to administer a cluster of computers. If this person can work part-time, by only coming to
work once per week, an organization can reduce the salary to1=5, or save $96,000 per year.

If the system administration cost was three times that of storage hardware cost as was
found in Strategic Research’s study, and we can reduce the system administration cost to1=5, then
we can calculate the the overall storage system cost reduction to be 60% using the following equa-
tions:

Costmaintenance = Costhardware � 3

Costoriginal = Costhardware + Costmaintenance

= Costhardware � 4

Costself�maintaining = Costhardware + Costmaintenance=5

= Costhardware + Costhardware � 3=5

= Costhardware � 8=5

Costself�maintaining

Costoriginal
=

Costhardware � 8=5

Costhardware � 4

= 2=5

Our system accomplishes this goal of self-maintenance by a combination of redundancy
and design. The next chapter describes the system in detail.

2.4 Summary

Reducing the burden on the system administrator is important for storage systems. The
system will be cheaper, safer, and more available if it can manage itself rather than rely on being
watched by a human operator. I am proposing a “self-maintaining” approach to system administra-
tion to attain that goal, as well as reducing the burden on the human operator by other means.
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Chapter 3

The System

This chapter illustrates the system on which my research was conducted. The application,
as well as the hardware and software architecture of the system, are described here.

3.1 The Application

The main application for the Tertiary Disk prototype is an image database holding pictures
of objects of art [TAP+98]. The “Thinker” site (http://www.thinker.org/ ), run by the Fine
Arts Museums of San Francisco, has been providing access to art images through the Internet since
October 1996. They implemented a searchable index of their art objects, through which the user can
query their database of over 70,000 images for keywords, such as artist name, title and description.
The user is presented with a page of thumbnails of images that fit the search criteria, and by clicking
on the thumbnails they can view larger versions of the images. The largest images they provide are
about 500 pixels on one side, many of them converted from color to gray-scale JPEG to save space.
The original files were much larger, up to 3,096� 2,048 pixels, but due to disk space constraints
and lack of a way to adequately present them to users over the Internet, they decided to only provide
relatively small images.

3.1.1 Problems

Understandably, one of the most common complaints from their users was “can’t you
make the pictures bigger?” We provide disk space for those larger versions of the images. There
were several reasons why it was not possible for the museum to provide larger versions of the images
initially.

Disk Space The full-size version of a color JPEG averages a little less than 1MB per image. Ac-
cording to advertisements on an August 1996 edition of MicroTimes, the largest 3.5-inch
drives available on the market at that time were around 4.3GB and their prices ranged from
$800 to $1,000. To hold 70,000 of 1MB JPEG images, they would have had to build a system
with 20 of these drives, which would have cost at least $16,000 for raw disks only. The people
at the museum neither had the budget nor expertise to maintain a storage system of that scale.
The TIFF versions, which have higher quality than JPEGs, average about 12MB per image.
To hold TIFF versions of all images, the space requirement will balloon to 840GB.



17

User’s Network Connection Many people connect to the Internet using modems. A standard con-
nection using a 56kbps modem can transfer at most 4KB per second. It takes over four
minutes to download a 1MB JPEG and almost an hour for a 12MB TIFF.

Memory Usage JPEG is a compressed image format; when uncompressed for display, they will
expand to about the same size as a TIFF image. In other words, there may only be 1MB
transferred over the network link, but every full-size image the user displays requires 12MB
of local memory just for raw image data. A few of these images will quickly expand the size
of the browser to 100MB or more, making them unacceptably slow.

Screen SizeThere is no computer screen that is large enough to display an image 3,000 by 2,000
pixels, so it is not feasible to just dump the entire image to the user’s web browser even if the
user has enough memory and a fast network connection.

3.1.2 GRID PIX

To solve the problems mentioned in the previous section, I wrote a web-based image view-
ing system called “GRIDPIX”. GRIDPIX uses tiled, layered JPEG images with multiple resolution
levels and simple HTML to achieve a “zooming” effect [Asa99].

The GRID PIX File Format

Figure 3.1 shows a three-layer GRIDPIX file. Tiles 1 and 2 form the smallest layer; tiles
3 through 8 are the middle layer, and the largest layer consist of tiles 9 through 23.

Figure 3.2 shows the interaction between the client and the server. When the client re-
quests an image, a CGI script (mkhtml.cgi ) returns an HTML page describing the page layout.
The individual image tiles are retrieved by a separate CGI script (gettile.cgi ). GRIDPIX is
completely HTML-based, so any graphical web browser can function as a client.

One important characteristic of the GRIDPIX server is that it requires very little process-
ing cycles during runtime. The images are already divided up into tiles by the TIFF-to-GRIDPIX

converter, so the numerous calls togettile.cgi only require two accesses to the file; to get the
offset and size of the tile from the header, and to retrieve the tile itself. In particular, there are no
JPEG encoding/decoding required on the server side. Moreover, the GRIDPIX files are very com-
pact, so after a few accesses, most of the requests will be handled by the server’s on-memory disk
cache, not the disk surface.

3.1.3 Status

The site opened to the public on March 2, 1998 with about 20,000 images [TAP+98]. We
currently have over 70,000 images available, occupying about 2.5TB of storage space when fully
mirrored. Each images are stored in several different formats, from the original PhotoCDs, which
are about 5MB per image, to human-processed TIFFs, which average about 12MB per image, to
GRIDPIX , which are about 1.2MB per image.

The reason why we couldn’t initially provide all the images as converted from PhotoCDs
is because the photographs are not of good enough quality to be presentable, and require manual
work to crop, reorient and color correct them before they can be presented to visitors. According to
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the people in the museum, the response from the public has been very favorable. Also, we have yet
to experience any down-time other than campus-wide network or power failures despite individual
machines crashing or being rebooted many times.

I have also gotten a few inquiries from people who are interested in using GRIDPIX to
present their own images.

3.2 Tertiary Disk Architecture

The Tertiary Disk group has constructed a prototype disk storage system, on which I have
conducted this research. The prototype’s total capacity is 3.2 terabytes. The system occupies seven
racks, each 7 foot tall and 19 inches wide. Figure 3.3 shows the system configuration. Here are
some highlights:

� 20 PCs (200MHz Pentium Pro with 96MB of memory each) as disk servers

� 364 8.4 gigabyte IBM DCHS 7,200RPM Ultra-Wide SCSI disks with SCA (Single Connector
Attach) connectors

� 52 Trimm Technologies model 381 8-disk SCA enclosures with serial interface

� 44 Adaptec 3940UW twin-channel Ultra-Wide SCSI adapters

� 2 16-port (4� 4) 100Mbps fast Ethernet switches

� 4 24-port serial terminal servers for PC consoles and disk enclosure interfaces

� PCs run FreeBSD operating system, with minor modifications

� Double-ending of SCSI buses for high availability

� Redundant front-ends use HTTP redirect to route user requests

� 6 uninterruptible power supply (UPS) units

� Remotely-controllable power switches on all PCs

� 2 PCs (133MHz Pentium) as HTTP frontends

� 2 PCs (200MHz Pentium Pro) as infrastructure servers

There are two different configurations with regards to PCs and disks. Four PCs are config-
ured in a “disk-heavy” configuration, called A-nodes, with 70 disks per PCs. The remaining 16 are
in a “CPU-heavy” configuration, B-nodes, with 32 disks per PCs. SCSI buses on B-nodes are run-
ning at 20MHz (Ultra-SCSI speed), while the A-nodes are running at 10MHz (Fast-SCSI speed).
The reason for this restriction is because the longer cables and high capacitance from having the
maximum number of devices per bus on A-nodes made them unstable with 20MHz operation.

Serial ports act as system consoles for all but one of the computers. The serial ports enable
the computers’ consoles to be accessible to automated maintenance scripts. One of the frontend
machines has a standard monitor and keyboard to provide access to the system when the operator is
in the machine room.



20

m15m14

m13m12

m19m18

m17m16

m11m10

m9m8

ackbar

m4 m5

m6 m7

tarkin

m3m2m1m0

stampede leia

Infrastructere servers

Frontends

System console

x 8 pairs

A-node
(70 disks / pair)
x 2 pairs

B-node
(32 disks / pair)

Figure 3.3: Tertiary Disk Final Prototype



21

3.2.1 Commodity Components

The most important feature is that this whole system is built only from commodity, off-
the-shelf, components. The use of commodity components lowers the cost of storage by factors of
two to four compared to standard RAID boxes. At the time of construction of the system in the
summer of 1997, large RAID arrays cost about 60 cents per megabyte; our system cost about 20
cents per megabyte using street prices of components.

3.2.2 Redundancy

In designing the TD prototype, we have taken care to ensure it does not have any single
point of failure.

Power
Multiple UPS units provide power for the system. There are power rails on either side of the
racks, connected to different UPS units. UPS units also provide 10 minutes of standby power
to survive temporary glitches in the main power line.

Each enclosure has two power supplies. They are connected to power rails on opposite sides
of the racks, and thus to different UPS units. Each power supply has a built-in fan, and there
is a third fan in the enclosure to ensure that the airflow around the disks will not be reduced
to half when one power supply fails.

Double-Ending of SCSI Chains
Double-ended PC pairs are connected to different power rails. They are also connected to
different network and serial switches. Termination on the SCSI bus is supplied by the SCSI
adapters. Figure 3.4 describes double-ending.

SCSI Adapter

PC
Disks

PC

SCSI Adapter

Figure 3.4: Double-Ending of SCSI disks

Our initial design used feed-through terminators to provide termination so the bus integrity is
not compromised even if one of the PCs lose power (Figure 3.5). However, the final prototype
was built without the external terminators. Terminators were omitted because of physical con-
straints of the particular parts we purchased—the terminators could not be installed on some
of the connectors on the twin-channel SCSI adapters. Also, the SCSI adapters had special
jumpers which would enable constant termination, i.e., the adapter will supply termination to
the bus even when the machine is turned off.
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Figure 3.5: Double-Ending with feed-through terminators

Having feed-through terminators affects the system in two ways. One is that it is possible
to remove a PC while still having the disks being accessed by its double-ended pair. How-
ever, this is not possible in our setup, since the SCSI components are not properly shielded
from power and signal glitches, and disconnecting a cable can cause incorrect functioning or
component damage. We plan to do any repair work only after powering off both machines as
well as all the disk enclosures involved, so having feed-through terminators will not help in
this way. We have sufficient redundancy so that powering down these two PCs will not deny
access to images.

The other effect is that the disks on the SCSI bus are still accessible when one of the SCSI
adapters have failed to the point that it is no longer able to supply proper termination. Similar
situations can arise if the SCSI adapter does not have a consistent termination setting, a PC
power supply, power rail or UPS unit failure, or the machine being turned off by the operator.
Given the failure frequencies we have observed, these four kinds of failures are very unlikely.
The last possibility—one of the two PCs being powered off—has happened only when there
was a part replacement, so is already discussed in the previous paragraph.

Data Layout
Most data are mirrored. Stable data, not necessary for the system’s day-to-day operation, are
backed up by CD-ROMs.

The rightmost column of Figure 3.6 shows how the data are mirrored. Each of the small boxes
indicate disk enclosures holding 7 or 8 SCSI disks; for instance, them0-m1pair has 10 disk
enclosures and them4-m5pair has 4.

The m0-m1 pair andm2-m3 pair, the A-nodes, back up each other, since they have more
disks than the other 16 disk servers with the CPU-heavy configuration. The remaining pairs,
the B-nodesm4-m5 throughm18-m19 are also matched up with pairs with the same number
of disks.

3.2.3 Topology

This section explains the topology of power and Ethernet connections in our system.

Power Switches
Figure 3.6 also shows how the PCs are connected to the remotely controllable power switches.
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To ensure that a power switch failure will not take down both PCs of a double-ending pair,
the machines are hooked up in a crisscrossing pattern.

As a reference, Figure 3.7 shows how the PCs would be connected if we did not have feed-
through terminators or SCSI adapters with constant termination jumpers. Since a power
switch failure would take down all SCSI buses connected to the PCs on that switch, it is
pointless to connect the PCs that form a double-ended pair to different switches. In this case,
the only focus should be to make sure that the two double-ended pairs that hold mirrored
copies of the same data (e.g.,m4-m5 andm12-m13) are not connected to the same power
switch.

Ethernet Switches
Figure 3.8 shows how the PCs are connected to our two 100Mbps Ethernet switches. Ours
are4� 4 switches, meaning the 16 ports are arranged in four groups of four ports each, with
the ports in each group sharing a common bus and a switch at the base to route between
each groups. For instance, with the topology in Figure 3.8,m0, m4 and m6 can send or
receive atotal of 100Mbps of data, whilem4, m8, m12andm16can all transfer at 100Mbps
simultaneously.

The connections are designed to balance the load in case one of the PCs of the double-ended
pair fails, or one of the mirrored copies become unavailable.

3.2.4 Disk Interface

There were several disk interfaces to choose from at the time we built the prototype. This
section briefly compares them and explains why we decided to use SCSI to build our system.

IDE
The most basic and cheapest of the alternatives, IDE, is very popular as the system disk for
PC-based systems. However, it is not sufficient for server systems such as ours. For instance,
at the time we built the prototype, most IDE systems did not support bus-mastered DMA
(direct-memory access), although today’s IDE systems support it. IDE only allows two disks
per bus, which limits the design space since the possible maximum number of disks per PC is
much lower than all other alternatives. IDE also does not allow multiple initiators on a single
bus, making it infeasible to use with double-ending.

SCSI
Small Computer Systems Interface (SCSI) is a parallel bus protocol that is widely used for
disk servers due to its availability on the market and flexibility. SCSI disks usually cost
50–80% more than their IDE counterparts but are cheaper than FibreChannel disks. The
maximum number of devices (including the SCSI host adapter) is equal to the bus width, so
you can have 8 devices on an 8-bit (“narrow”) bus and 16 devices on a 16-bit (“wide”) bus.
The SCSI standard allows multiple initiators on a single bus.

SCSI has been doubling the transfer rate every three years, from 5MHz to 10MHz to 20MHz
to 40MHz to 80MHz in bus frequency and from 8 bits to 16 bits in bus width. The fastest SCSI
bus today runs at 160MB/s, with 80MHz bus frequency on a 16-bit bus. However, the higher
clock rates has put stricter demands on cabling and electrical characteristics of components.
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For example, the maximum cable length for 20MHz operation, the maximum possible for our
disks and adapters, on a traditional “single-ended” SCSI bus, is 1.5 meters.

The current standard in the market is “differential” SCSI, which allows a much longer cable
by pairing signal and ground pins instead of sharing a common ground signal. The maximum
cable length is 12 meters for 20MHz operation using differential SCSI. Several external SCSI
RAID boxes used differential SCSI to connect the RAID chassis to the host for this reason
even before differential SCSI was of widespread use.

The new serial interfaces, described in the next two paragraphs, also mitigate the cable-length
problem.

SSA
Serial Storage Architecture (SSA) is a point-to-point serial interface. SSA allows up to
20MB/s to be transferred in both directions at any given link, and supports up to 126 de-
vices on an SSA segment. By connecting devices in a circle, it is possible to transfer up to
80MB/s total (40MB/s read, 40MB/s write) on one host adapter by moving data in both di-
rections simultaneously. SSA has the characteristic that a single link failure in a loop willnot
compromise the integrity of the entire segment, as the loop will simply become a string when
the failed link is logically disconnected by the SSA circuits on the devices on both sides of
the failed link.

FC-AL
Another standard, FibreChannel-Arbitrated Loop (FC-AL) is a loop-based serial interface.
FC-AL allows up to 127 devices on a single loop. There are several versions of the interface,
varying in cost and performance. The fastest implementation can transfer up to 1.06 Gbits per
second, or about 100MB/s. One of FC-AL’s weaknesses is that a single link failure will cause
the entire loop to cease functioning. This problem can be avoided by integrating two loops,
one in each direction, into one, or by using a repeater hub with automated failure isolation
features.

In 1998, the SSA and FC-AL groups have agreed to merge their standards. The new
standard is mostly FC-AL based but also incorporates SSA’s link-to-link characteristics for safety.
The new SCSI-3 standard will run on several physical transport layers, including SSA/FC-AL.

At the time we were testing equipment for our prototype, IDE and SCSI were the only
interfaces for which devices were widely available and affordable. Between those two, SCSI was
the easy choice due to technical limitations of IDE. Also, SSA and FC-AL standards were still
highly fluid at that time.

3.3 Software Architecture

There are several aspects of software architecture that need to be discussed. Here I will
explain how we handle user requests, and what modifications we made to the operating system to
support our system.
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3.3.1 Handling User Requests

Our main application, as described in section 3.1, is a web server for fine art images.
Figure 3.9 shows how user requests are handled. When a user at the museum’s site selects an option
to display the GRIDPIX version of an image, the request first arrives to a frontend machine. The
frontend will then look up a table and return an HTTP redirect message to the user’s client, which
subsequently reconnects to the backend machine holding the image. From that point on, the client
interacts directly with the backend machine until the user has finished examining that image.

Backends

Search

URL of images
HTTP redirect

Request

Users

Frontends

Tertiary Disk Project (Berkeley)

Search Engine

Images

San Francisco
Fine Arts Museums of

Figure 3.9: Handling user requests

Masking Failures

There are several levels of masking we can do for failures. In one extreme, a system can
have non-volatile RAMs holding state information for open TCP connections so a machine crashing
and rebooting will not cause any connection to be lost. The other extreme, like NFS, is to have a
stateless server with clients retrying until the server replies. This model causes the client to lock
up until the server recovers, but will not lose any requests. It is even possible to replace a failed
server with another machine as long as the device IDs and i-node numbers of the filesystems stay
the same—from the client, it will just look like an extremely long network failure or server reboot.

Those two models are required in a local-area network environment where correctness of
response is most important. Our premise, as mentioned in Section 1.1.3, is that since the Internet is
so unreliable, it doesn’t make sense to try to mask all of the failures. Our goal then becomes how to
implement the “repair by reload”; in other words, how to make sure the system will be able to mask
any failure within a few seconds to allow retries from end-users to succeed.
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Frontend Switching

Figure 3.10 shows how we mask frontend failures from users. We have two frontends,
tarkin.cs.berkeley.edu andackbar.cs.berkeley.edu , backing up each other us-
ing IP aliasing. The canonical address,gpx.cs.berkeley.edu , is usually an alias oftarkin .
The other machine,ackbar , checks every 5 seconds over the local area network to see iftarkin
is up. When it can’t contacttarkin , it will take overgpx . ackbar will still keep checking for
tarkin every five seconds, and will release thegpx alias as soon as it findstarkin back up.

user request

ackbartarkin

query

query

128.32.45.132 128.32.45.131

128.32.45.101

gpx

take over alias

no reply

reply

(IP alias)

(primary) (backup)

User

reply

Figure 3.10: Frontend switching protocol

This simple method will handle all four of the cases wheretarkin or ackbar are
down or their network interfaces are not functional. Table 3.1 summarizes them. Note that when
ackbar ’s network interface is broken,ackbar will attempt to take over, but the clients, which
can only reachtarkin , will continue to connect totarkin without any ill effects.

Cause Response Clients connected to
tarkin down ackbar takes over ackbar
tarkin network failure ackbar takes over ackbar
ackbar down (none) tarkin
ackbar network failure ackbar takes over tarkin

Table 3.1: Frontend switching effects

Backend Failures before the User Connects

Both tarkin andackbar check all the GRIDPIX servers every 5 seconds. This check-
ing is done by fetching a particular file from the machine; the file will not be available if the HTTP
server is down or the disk is having problems. When a frontend discovers problems on one of the
machines, it will automatically forward any subsequent requests from users to the backups. Since
the CPU load on the frontends are very low, and the scripts are very simple, it is very unlikely that
these scripts will not detect problems quickly.
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Backend Failures while the User Is Connected

The above two methods will cover most cases except for one—users already in a GRIDPIX

session when a server goes down. There are two ways to mask this case: to implement something
similar to the frontends, having two servers back up each other, or have another machine, possibly
one of the frontends, to take over the IP address temporarily and forward the request to the backup.
The latter way is better for two reasons. First, the backends do not need to know which machines
they are backing up. When data is moved around, or when additional mirrors are added, the first
method will require updates of file lists on the backends in addition to the frontends. The second
reason is that is that it is easier to implement, since the frontend already has support for querying
the status of another machine and taking over, as well as forwarding requests to a different machine.

Load Balancing

Currently we are just redirecting the user to the first machine on the list, since the load
is very low compared to the machines’ capacity. However, our frontend-backend protocol can also
be used to balance the load among backend machines if it becomes necessary. By having the back-
ends put some information in the file fetched by the frontends, they can easily communicate to the
frontends how much load they are experiencing.

3.3.2 Operating System Support

In this section, I will describe what modifications we had to make to the operating system
in order to build our system.

SCSI/Disk Subsystems

The SCSI and disk subsystems were the ones that caused most problems for us. It is
understandable because commodity hardware is not usually designed with a large server system like
ours in mind. Experience with scale is one place where specialized storage system manufacturers
have an advantage.

The exact nature of the problems and our fixes to them are not part of the main focus of
my research; therefore, they are not covered in this dissertation.

Disk Identification

One problem with having several hundred disk drives, all looking identical, is that it is
very easy for the operator to confuse them. SCSI disks are identified by their SCSI IDs within
their bus, which are distinguished by the host adapter number within the machine, which are in turn
identified by hostnames and IP addresses. Each host keeps a static configuration table, typically
called/etc/fstab , which describes which disk is mounted on which directory in the filesystem
hierarchy. In cases of concatenated or striped sets, there may be extra configuration files describing
the setups of those virtual disks. It is essential that relationship between the disk IDs and the actual
disks kept consistent.

The problem is that if two disks are exchanged, the operating system may not be able
to tell the difference; it will just use the disks until something fails. This problem is especially
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true for SCA disks, as SCSI IDs are specified on the disk enclosures, and if a pair of disks are
accidentally swapped, their IDs will change with the location in the enclosure. There could be
several different consequences ranging from OS crash to application error; some of them involve
corruption of filesystems and are extremely dangerous, especially when the disk is part of a striped
set.

We needed to design a system in which the operating system will be able to notice when
disks are installed incorrectly. There are various ways to implement this, with trade-offs in the
effects and complexity of design. Here are the few alternatives we considered.

Serial Numbers
Each disk has a unique serial number written in its permanent memory at the factory. By
reading this number, the operating system can ensure that all the disks are in correct locations
by keeping a list of serial numbers of the disks and comparing disks to it upon each boot.

Comment: It is easy to implement, but will not let us do more than simple safe-guarding
against operator errors.

Disk Label
Each disk has a “disk label” which describes the partitioning of the disks as well as some other
information about the disk, such as rotational latency and geometry [BSD94]. It is possible
to expand the format of the disk label to include some more information, such as expected
bus/SCSI IDs and mount points.

Comment: There are more features we can implement with this than with the previous option;
it can be used for simple safe-guarding with bus/SCSI IDs to more complex tasks such as
automatic mounting. Note it doesn’t even require a table to be kept on the system, as the
disks record on themselves where they are supposed to be mounted on the system. However,
since the disk label has a fixed size, there is still a limit on the complexity of what we can do.
For instance, we’ll need to add special fields to describe if the disk is part of a striped set, and
if it is, how many other disks are there, where in the set this disk appears, and so on. It is not
very extensible, and in order to make new options on how to use the disk available, the kernel
or the utility to read the disk label needs to be recompiled.

Script
The last option is for each disk to have a “known” location—possibly a fixed partition—on
which there is a filesystem where there exists a script that is to be executed in turn when the
system boots.

Comment: What we can do with this option is virtually unlimited. The scripts can be used
to check the disk’s identity—the system boot process just needs to call the disk’s script with
its bus/SCSI IDs as arguments. It can be used to auto-mount necessary filesystems, or it can
be used to construct more complicated entities such as striped arrays. Note that in either case,
there is no per-host configuration required on the boot disks themselves; the boot disks just
read in the scripts and execute them in turn. If the scripts are written cleverly, it may even not
matter what order the disks are inserted in a particular enclosure.

If a disk is moved to a different machine, it is not possible for our system to rectify the
situation without an aid of an operator; we would need some kind of distributed filesystem to
handle such cases.
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I have implemented the last option, the script method. It is now possible to move disks
around within the same machine and still have them mounted correctly, both for the single filesystem
case and striped array case. The script is made to flag an error when the disk is inserted in an
inappropriate enclosure. The scripts also automatically select the correct PC of the double-ended
pair upon startup, and will refuse to be configured if the disk is connected to a wrong machine. The
checking is done by having the startup process pass an extra argument, the machine name, to the
disks’ scripts.

Fast Reboot

It is important to reduce the time required for rebooting the system in order to minimize
the window of vulnerability. Table 3.2 summarizes the effects of various improvements I have made,
or have explored on our system. The numbers are based on a system with three SCSI adapters.

Reboot step Improvement Old time New time Reduction

Check disks Use soft updates 20 minutes 28 seconds 20 minutes
System BIOS BIOS-less boot 78 seconds 0 seconds 78 seconds
SCSI probe Reduce SCSI delay 24 seconds 11 seconds 13 seconds
Device probe Remove components 31 seconds 21 seconds 10 seconds

Total 22 minutes 60 seconds 21 minutes

Table 3.2: Reboot steps and timings

These are more detailed explanations on each item, in decreasing order of significance.

Fast fsck The largest amount of time the machine takes after a crash is spent runningfsck , the
UNIX file system consistency check and repair program [McK85]. It takes about 20 minutes
to run fsck on our 15-disk striped arrays. In the past,fsck checked all the filesystems
during every reboot, but in recent versions of UNIX, this has become only a problem after an
unclean shutdown—fsck will check the filesystem flags and will take no further actions if
the filesystem was unmounted cleanly, so unless the operating system crashed or the machine
hung and was power-cycled,fsck will complete in less than a second. Note that multiple
fsck processes can be run in parallel, so the number of such arrays do not change the total
amount of time it takes to check all filesystems.

Kirk McKusick, the author offsck and architect of the original BSD Fast Filesystem [McK84],
has been working on a project called “soft updates”, in which by changing the way dirty data
is written to the FreeBSD filesystem, both the performance and reliability improves greatly.
These filesystems also do not needfsck to be run even after a crash [McK98]. The filesys-
tem may lose some space, but the data structures on the filesystem will be consistent with
each other. We still need to runfsck from time to time to reclaim the space, but it can be
done at any time, not right after a crash.

I have been using soft updates on our machines for over a year with no ill effects. When I
started using soft updates, it was supplied as external “snapshots” from McKusick’s reposi-
tory; the code is now in FreeBSD’s main source tree.
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BIOS-Less Boot I have also explored the possibility of implementing a “quick boot” option of the
operating system, which doesn’t use a hardware reset. Our systems take 78 or 57 seconds,
depending on whether they have three SCSI adapters or two, just to go through the BIOS.
Most of the time is spent while SCSI cards are initializing themselves, but this is not really
necessary for a warm boot. Also, about 5 seconds is spent checking available memory, which
is obviously useless too if we are rebooting a previously-running machine.

By having a reboot just jump to the initialization code in the kernel, we can completely elim-
inate the lengthy BIOS process. However, various kernel modules are not necessarily written
to be reentrant, and although I did get some favorable responses when I mentioned this in the
FreeBSD developers’ mailing lists, I did not have time to actually implement this.

Reduce Time of Wait for SCSI DevicesThe delay for SCSI probe after a SCSI bus reset was 8
seconds per bus, but for our system, it could be reduced to 2 seconds without any noticeable
effect. The default delay was based on a pessimistic expectation that the user may have an
old device that takes a long time to reset itself after a SCSI bus reset is issued.

Remove Unneeded Kernel ComponentsBy removing unneeded kernel components, the kernel
becomes much smaller and uses less memory during normal operation. It is also faster to
load by about half a second and takes much less time to boot because it does not have to
probe devices that do not exist on our system. The removal of unneeded components has
reduced about 10 seconds from the boot time, from about 31 seconds to 21 seconds. Of the
21 seconds, 11 seconds are used searching for the second IDE drive—the drive our machines
don’t have, but are in the kernel so we can make duplicates of system disks quickly when
there is a IDE disk drive failure. By removing this driver, it can be further reduced to 10
seconds.

3.4 Summary

The Tertiary Disk group has built a 3.2TB storage system consisting of 364 SCSI hard
drives and 24 PCs, including frontends and infrastructure servers. We have also written an appli-
cation, a web-based image database server, and modified the operating system in order to run our
application more reliably and make it easier to maintain. The system has been online since March
of 1998 and has received favorable reactions from users. Other than campus-wide network or power
outages, Tertiary Disk has not had an outage that made images unavailable to outside users.
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Chapter 4

The Cost of System Administration

As mentioned earlier, while storage system hardware has gotten cheaper over the years,
the cost of system administration has remained high. Since the decrease in cost of hardware is
not showing any signs of slowing down, this situation is not likely to change in the near future. If
system administration cost is many times that of hardware cost, clearly there is little or no point in
trying to reduce the cost of hardware. Thus, for our system to make sense, it is necessary that we
reduce the cost of system administration by at least an order of magnitude. There are several means
to accomplish this. We focus on two methods in this dissertation.

One is to make the systemself-maintaining. By having the storage system maintain itself,
we will be able to reduce the burden on the system administrator, which in turn results in lower cost
and higher reliability. The issue of system administration is not only that of monetary cost. A system
that functions continuously without an aid of a human operator has a higher availability than one
that requires human intervention to keep it running. Also, the pressure on system administrators to
fix the problems immediately often results in human errors that compound the hardware problems.
With large storage systems, results of such operator errors can be disastrous. The self-maintaining
aspect of the system is discussed in Section 4.1.

The other is to make the systemeasier for the operator to maintain. These methods are
discussed in Section 4.2. It is ideal to have the system be completely care-free, but there are many
aspects of storage system administration that cannot be made fully automatic. However, there are
other ways to reduce the burden of the system administrator. Although these improvements are hard
to quantify, they are nonetheless useful in increasing the availability of the system, thus indirectly
reducing the cost of administration. For instance, a system which safeguards against operator errors
will have a better uptime than a system that requires the operator to make no errors. An example of
such a “safety belt” is the automatic disk identification scheme mentioned in Section 3.3.2. Another
way to make the system easier to maintain is to reduce the time it takes to upgrade the operating
system, a topic that has been researched in the past in the context of binary upgrades to commercial
operating systems [SMH95]. If the system administrator has to work late into the night to upgrade
a cluster, the person is more likely to make mistakes near the end.

One thing my research doesnot address is management of data on a large storage system.
Management of data involves keeping track of where everything is located, reallocating space as
necessary, and so on. Although it is an interesting research field, there are other projects that are
pursuing it and I did not think we could make my approach generic enough to be of a wide interest
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[BGM+96, Wal98, Jir99]. For a summary of other research projects on this topic, please refer to
Section 1.3.4.

4.1 Self-Maintaining System

In this section, I will define what “self-maintaining” means, and outline the requirements
on how to construct such a system.

4.1.1 Definition of Self-Maintaining System

There are two aspects to self-maintainability of a system, depending on whether the per-
spective is that of the system administrator or of the user.

System Administrator’s Perspective

To the system administrator, a self-maintaining system is one that does not require con-
stant attention. For the purpose of my research, I define it as a system that is:

� designed to function with only pre-scheduled, say, weekly maintenance, and

� for which, at maintenance time, the required tasks are clearly defined.

There is nothing special about the repairs having to be weekly. The visits can be twice a week,
monthly, or even daily. The important part is that the visits are pre-scheduled and not driven by
events such as hardware failures. My research goal is to show that it is possible to build a system
that runs with a reasonably-spaced scheduled visits by humans.

There are two major benefits of this approach:

Reduce Operator Errors
Regularly scheduled visits will help the operator’s performance and reduce mistakes. An
operator that is working during regular hours are less likely to make errors than one that was
paged at, say, 3 A.M. Also, not being under the pressure of having to fix the system right
away will likely reduce the chances of operator errors. Studies supporting these claims can
be found in Section 2.2.2.

Reduce Operator Cost
As mentioned in Section 2.3, another benefit is that it is not necessary to pay a full-time wage
for a system administrator of such a system. We can either hire someone part-time or have
the same person administer many systems instead of just one or two.

The second rationale is similar to that behind Tandem’s TMDS [Bar81, Tan97b]. Tandem has
engineers at the support center 24 hours a day, and systems having problems will automatically
dial up Tandem to contact one of the support persons. A few hours after the failure, the support
person will show up at the customer’s site with necessary repair parts. Thus, the companies that
purchase support contracts do not have to hire operators by themselves; they are in effect “sharing”
the operators with other companies through Tandem.
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Our system will take this one step further. There is no need for anyone to be at anywhere
in the middle of the night; in fact, there is no need for anyone to be at any central support center. The
operators can travel from one customer site to another throughout the week, or they can be doing
something else during most of the week. By hiring a part-time operator that only comes to work
once per week, an organization can cut the human cost of administration to one fifth.

User’s Perspective

There are two classes of users on a web-based storage system like ours.

End Users
These are the people who use the system from the Internet. They know nothing about the
internals of the system, will easily get annoyed if something doesn’t work, and may never
return to our site if they are unhappy. They usually only issue reads to the system.

Content Providers
There are relatively few people whose job is to update the contents of the web server. They are
part of the project, and can wait for a while if the system cannot allow writes at the moment.
They have a good knowledge on how to use the system, but usually know little about the
internal workings.

To reduce end-user frustration, it is important to reduce the system’s down-time as seen from across
the Internet. Note that a system that relies on an operator to keep it running is not as available as one
that maintains itself, as it will take minutes or maybe even hours for the operator to actually be able
to repair the damage [GS91]. Our goal is to have the system repair any interruption of service within
a few seconds, and continue to function unattended until the next scheduled visit by the operator.
For a web server application such as the one we are running, this is illustrated by the slogan “repair
by reload”.

As Mary Baker said in her Ph.D. thesis, “in the limit, as recovery time approaches zero, a
system with fast crash recovery is indistinguishable from a system that never crashes at all” [Bak93].
Her research was about file servers on distributed operating system, and the above statement was
qualified that it is only appropriate in systems that can tolerate short periods of down-time, as a
cluster of workstations in a typical engineering or research environment.

I believe our application, a web server, is another example where a system with fast crash
recovery is just as good as a system that never crashes. This claim is based on the observation that
since the Internet is so unreliable, it will be impossible for the user to distinguish problems on our
servers from the daily transient problems of the network.

For the content providers, the situation is a little different. It is permissible to have the
system be in a state that it cannot receive input from them for a short while. However, repeated
problems will affect their productivity as well as delay the update of the contents, so it is desirable
to keep downtimes as short and as infrequent as possible.

In order to partially shield problems from the content providers, we offer aportal to
which they can upload the new images. Once the data is in the portal, they can go on to their work.
However, if there is a problem with some other part of the system that disallows writes, the new
images may not be available on the web until the problem is fixed.
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4.1.2 Requirements

There are several requirements for building a self-maintaining system. Here the require-
ments will only be listed; the implementation details can be found in Sections 3.2 and 3.3.

No Single Point of Failure
Such a system is not allowed to have any single point of failure. This restriction makes it
possible to decouple the time of repair from the time of failure, allowing the system to run
under an existence of a failure. Clearly, depending on how many failures the system should
tolerate, it may be necessary to have even more redundancy. Not having a single point of
failure is a minimum requirement for any system that is designed to function continuously in
an event of a component failure.

Constant and Reliable Monitoring
The system should be constantly and reliably monitored so corrective actions are taken very
quickly after failures. We use very simple shell scripts for monitoring, and have an interval
of four seconds of sleeps between monitoring. The monitoring scripts are autonomous, so a
failure on one machine will not cause a monitoring script on another machine to malfunction.

There are some characteristics in our application that makes it easy to build a self-maintaining
system. Although these are not hard requirements, they nonetheless have helped us simplify the
design of the system.

End-users Issuing Only Reads
One important aspect of our system is the read-mostly nature of end-user accesses. We believe
this is not unique to our application; many other applications with similar terabyte-capacity
scale share the same characteristics. By not having to allow writes in degraded mode, imme-
diate recovery is only a matter of locating the backup and rerouting user requests there while
more lengthy recovery procedures can take place.

Little Internal Communication
The application needs very little internal communication to handle user requests. See Sec-
tion 3.3.1 for details on how user requests are handled. This low usage simplifies the recovery
as there are only few messages or connections that might be lost due to a failure. Also, the
low internal communication overhead enables the system to scale up nicely in the future.

4.2 A System That Is Easy To Maintain

There are several other improvements we have made to our system to reduce the burden
on the system administrator. Although they do not relate directly to the “self-maintaining” aspect of
the system, they are nonetheless important for the maintainability of the system and are described
here as part of the effort to reduce the overall cost of maintenance.

As mentioned earlier, one of the most dramatic failures of our system was caused by the
operator replacing a wrong disk and attempting to reconstructing a striped filesystem, destroying the
only good copy of mirrored data. In order to avoid making any more similar mistakes, I implemented
a disk identification mechanism that will automatically detect when a disk is connected to the wrong
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machine. It has also been useful when we had to replace disk enclosures—no matter what order
the disks are inserted into the enclosure, the striped set will always be configured correctly. If
the ordering of disks doesn’t matter, it means one less thing to worry about when the operator
is performing a time-consuming and stressful operation like replacing a disk enclosure, therefore
reducing the chance of human errors in subsequent steps.

4.2.1 Disk Identification

As mentioned in Section 3.3.2, our system will not lose data if a disk is inserted in a wrong
location in the cluster, even if it is part of a striped array. The method I implemented to accomplish
this is very generic and extensible.

4.2.2 Taking Advantage of Redundancy

There are several ways to take advantage of redundancy in ways not possible on a tradi-
tional centralized server. I will describe a couple of those methods in this section.

Preventive Maintenance

People at Inktomi have found that their system can be made more reliable by restarting
the application periodically [BL98]. The reliability problems are caused because of thread leak
problems in the server process. Instead of spending many man-weeks trying to track down the last
thread leak bug, it is much easier to clear the problems by a restart. Since their servers are fully
redundant, it will not cause any interruption of service for the users.

Large servers are known to develop some bad processes from time to time. Anyone who
has been in a clustered computing environment has seen many messages from the system adminis-
trator saying something like:

“The file server is going to have a quick reboot today at 12:15 to clear wedged NFS
processes—please send mail by 11:30 if you have a problem”.

One solution to this is to periodically reboot the server on off-peak hours, instead of wait-
ing for problems to develop. It will be even easier for both the users and the system administrator
if the machines can be rebooted without any interruption of service. System administrators will
especially benefit from it, since they will no longer have to worry about when to schedule the re-
boot, check users’ mails to see if it is really ok to reboot it, and then wait at the console hoping the
machine will come up in three minutes as scheduled.

We have discussed implementing similar methods with our system. In our case, it is not
the software, but the hardware that benefits from reboots. The SCSI disks we are using sometimes
enter a certain state from which it doesn’t reply to SCSI commands anymore; it requires a reboot
to fix. I suspect they are due to bugs in disk firmware that cause the state machine to go into a
situation that is not foreseen by the designer. I have observed that the problem is caused much more
often when there is a lot of traffic to several disks on the SCSI bus. Most of the time, the problems
are recoverable by sending SCSI bus resets from the disk driver—we have worked with FreeBSD
developers and had them add code to do just this—but sometimes the disks will not respond to bus
resets, and the machine either loses access to the disk or crashes.
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Since these problems are usually preceded by a distinct kernel message, we can prevent
further damage by automatically rebooting the machine at first sight of the problem.

Testing New Systems

When new software, either operating system or application, arrives at a site, it is usually
installed on few test machines that are set aside for this purpose. Only after the system administrator
is confident about the reliability of these systems, they will be deployed in the main cluster.

There are several problems to this approach. First, the performance of the test system is
not necessarily a good indication of the real system. Even with artificially generated high loads, the
test is never going to be equivalent to the real workload. It is possible to trace the real workload
and simulate it on the test machine, but this is very expensive and will require an experienced
administrator to do it right. Second, the test-bed is not contributing to the overall performance of
the system, as it does not serve user requests. In essence, the price and administration cost of the
test-bed is an extra overhead in the cost/performance equation.

However, with a fully redundant and independent system like ours, it is possible to just go
ahead and install the new version of software on few of the production machines. Since the system
as a whole is designed to tolerate one or more machines going down, even the result of a completely
dysfunctional software upgrade is not as disastrous as it used to be.

Note that this method only applies to subsystems which are expected to either work or fail,
with no middle ground. In particular, if there are updates to the data through a particular subsystem,
it will still be too dangerous to use a version of unknown quality as this could result in corrupted
data.

4.2.3 Modular Upgrading

Upgrading a cluster of computers is always difficult, and one that doesn’t have a simple
solution. People usually write custom scripts to do it semi-automatically [SMH95].

Problems with the Build Process

FreeBSD is quite unique in this respect, as not only is the full source tree provided, it is
also carefully maintained so users can rebuild the entire system with one command (cd /usr/src;
make world ). This command can be used to upgrade the system just by obtaining the latest
sources. FreeBSD also offers the full revision history of the source tree, which enables compiling
the entire system as it was at any point in time in the past, making it possible to select a “known
good” source tree to build a system from after watching the mailing lists for a few days.

However, this approach has its drawbacks. If you want to compile the operating system
and not extract it from a binary distribution, a fairly complicated process is required to make sure
all the tools and dependencies are built in the right order. For instance, all binaries need to be built
with new libraries, which may need new compilers, which may need new text formatters to process
the header files, and so on.

This problem used to be solved by installing necessary components first on the host sys-
tem, then running a full compilation. Other than the danger of having a partially upgraded system
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when the compilation fails in the middle, another drawback of this approach is that it puts a high
load on the network when a cluster of computers is sharing the same NFS filesystem for sources.

Separating Build and Install Phases

I made it possible to segregate the build and install processes by changing the build pro-
cess to install necessary components in a temporary tree instead of the host system’s system di-
rectories. The old “world ” target is now composed of two targets, “buildworld ” and “in-
stallworld ”, which don’t necessarily have to be run on the same system. “buildworld ” will
rebuild the entire systemwithoutaffecting the host system; “installworld ” takes the result of
“buildworld ” and installs it. Using this method, I have successfully upgraded our systems three
times. By running “buildworld ” on a fileserver and then “installworld ” on each of the 20
clients, the entire system can be upgraded in a few hours, with only a minimal amount disk space
used.

Note that under the old method, I would either have had to run “world ” on one of the
clients, causing the entire system to be compiled over NFS, or duplicate the source tree on all
the machines. Running a large compilation takes a long time; for instance, on our machines, the
“buildworld ” takes about 1 1/2 hours if the source tree is on the local disk, and almost 4 hours
when it is on an NFS-mounted remote disk, for an improvement of 2 1/2 hours.

Also, the new method makes it possible to recover from faulty systems easier, since build-
ing is done on a completely separate environment. If I installed a version of a system that is unre-
liable, all that is required is a few tools (make,install , etc.) and functional NFS to go back to
any known good snapshot.

4.3 Summary

There are two benefits in reducing the system administrator’s burden by making the sys-
tem maintain itself. One is that a system that automatically maintains itself will be more available
than a system that relies on humans to keep it running. The other is that a system that is easy to
maintain can be cheaper because a full-time system administrator’s salary is quite expensive.

This chapter analyzed these benefits and described some of the improvements I made
to our system to reduce the cost of system administration. Those include; taking advantage of
redundancy using preventive maintenance and field-testing of new systems, and modular upgrades
of a cluster of machines.
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Chapter 5

Failures

We have been observing our system carefully since we constructed it. The objective is to
collect enough data to run a simulation to prove that the system will actually run continuously and
flawlessly in the existence of failures. The failure records are during the 24-month period from July
1997 to June 1999. In this chapter, I mention how the data was collected and presents the results of
analysis on the data. The simulation itself is described in the next chapter.

Nisha Talagala has presented another analysis of the same system [Tal99]. The data in
this section differs in that I have analyzed data for a longer period of time, intending to collect
as much data as possible for the simulation I was going to run, while she made a more in-depth
investigation on each of the failures, with extra emphasis on how components gradually deteriorate
over time until they fail. The data that is included in my summary and not in hers include repair
actions, amount of time it takes for repair, and clustering of failures. The results that are common
between our data are consistent with each other.

5.1 Collecting Data

We tried to keep the log of all the failures we experienced. Many errors have distinct
entries in system logs. I have modified the system to keep the logs for much longer than the default.
In addition to observing the components under normal use, we subjected some disks to artificial
loads to see if it will make any difference in failure rates. This experiment in part augments the low
loads we’re seeing on the Zoom project.

There are two logs in the system that can be used to observe component behavior. They
are the main system log, and the HTTP server log. In addition, I have kept notes of most of the
repairs that I performed.

5.1.1 System Log

The main system log (called/var/log/messages in FreeBSD) is where all the kernel
messages, as well as messages from any process using thesyslog facility, go. Disk problems
usually first show up here as a continuous stream of retries and failures. Processes getting killed due
to various reasons are recorded here too. Most of them are segmentation faults due to programming
bugs, while there are some others, such as pager faults, that are caused by hardware problems.
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Jul 24 10:40:09: (da73:ahc4:0:9:0): READ(10). CDB: 28 0 0 50 54 cf 0 0 80 0
Jul 24 10:40:09: (da73:ahc4:0:9:0): RECOVERED ERROR info:505546 asc:18,2
Jul 24 10:40:09: (da73:ahc4:0:9:0): Recovered data - data auto-reallocated sks:80,12
Jul 24 11:02:11: (da40:ahc2:0:8:0): SCB 0x25 - timed out while idle, LASTPHASE == 0x1,
Jul 24 11:02:12: SCSISIGI == 0x0 SEQADDR == 0x8
Jul 24 11:02:12: (da40:ahc2:0:8:0): Queueing a BDR SCB
Jul 24 11:02:12: (da40:ahc2:0:8:0): Bus Device Reset Message Sent
Jul 24 11:02:12: Bus Device Reset Completed.
Jul 24 11:02:12: (da40:ahc2:0:8:0): no longer in timeout
Jul 24 11:02:12: ahc2: Bus Device Reset delivered. 2 SCBs aborted
Jul 24 11:02:22: (da40:ahc2:0:8:0): SCB 0x25 - timed out in command phase,
Jul 24 11:02:22: SCSISIGI == 0x4 SEQADDR == 0x146
Jul 24 11:02:22: (da40:ahc2:0:8:0): BDR message in message buffer
Jul 24 11:02:24: (da40:ahc2:0:8:0): SCB 0x8e - timed out in command phase,
Jul 24 11:02:24: SCSISIGI == 0x14 SEQADDR == 0x146
Jul 24 11:02:24: (da40:ahc2:0:8:0): no longer in timeout
Jul 24 11:02:24: ahc2: Issued Channel A Bus Reset. 4 SCBs aborted
Jul 24 22:41:29: (da78:ahc4:0:14:0): SCB 0x51 - timed out while idle, LASTPHASE == 0x1,
Jul 24 22:41:29: SCSISIGI == 0x0 SEQADDR == 0xb

Figure 5.1: Sample system log

Unfortunately, not all of the system logs are still available. Some of them have been lost
to disk failures, while some others have been deleted due to operator carelessness. At the beginning
of the project, we were not expecting the logs to be very precious. Table 5.1 shows how long back
the logs go on each of our machines. As can be seen in the last line, even though a fair number of
earlier logs are lost, there are still an average of over 17 out of 24 months of system logs remaining.

Host Log From Months Host Log From Months
m0 Feb 1998 17 m10 Feb 1998 17
m1 Jul 1997 24 m11 Sep 1998 10
m2 Feb 1998 17 m12 Jul 1998 12
m3 Feb 1998 17 m13 Feb 1998 17
m4 Sep 1998 10 m14 Apr 1998 15
m5 Feb 1998 17 m15 Apr 1998 15
m6 Dec 1997 19 m16 Jul 1997 24
m7 Sep 1997 22 m17 Sep 1998 10
m8 Feb 1998 17 m18 Jul 1997 24
m9 Nov 1997 20 m19 Aug 1997 23

Total 347
Average 17.35

Table 5.1: Log durations

As an example of what they look like, Figure 5.1 shows some lines from one of the logs for
the machinem0.cs.berkeley.edu . The year is 1998. To improve readability, I have removed
some fields to fit the lines here without excessive wrapping.

The following is what we can deduce from this particular fragment. First, at 10:40 AM,
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the diskda73 , with SCSI ID 9 on SCSI bus 4 had a single read error that was successfully recovered
by the disk drive’s controller. The disk’s controller automatically reallocated the data so the sector
in question will never be read again. About 20 minutes later, a different disk,da40 , with SCSI
ID 8 on SCSI bus 2, had a few unexpected timeouts. These timeouts eventually led to the SCSI
driver issuing a SCSI bus reset in an attempt to restart the disk. The bus reset cleared the problem
since there have been no more problems reported until 10:41 PM of the same day. This is a typical
“timeout-recovery” sequence that is explained in detail in Section 5.3.3.

After removing non-essential messages such as login history, there were still over 250,000
lines in the system logs. I wrote a program to analyze the logs.

5.1.2 HTTP Server Log

HTTP servers write their own logs. There is one file to record accesses (httpd-access.
log ) and another for errors (httpd-error.log ). Most of the entries in the error log are for
missing files, but there is some information such as when the HTTP servers were restarted. This
log would have been useful if the HTTP servers crashed more often. However, as it turned out, our
HTTP servers were very reliable and crashed only once, so I didn’t have to look into this file for
information on restarts.

5.1.3 Repair Records

Since I did not know I would be using the repair records for my dissertation during most
of the project, I did not keep a repair logper se—however, I believe I have been able to identify most
of the repairs I conducted. Other than my own memory, the information came from the following
sources.

Mail Messages
I have kept all the mail messages during the course of the project; there were over 4,000
messages originating from myself in the archive, and almost 10,000 total. Since I was the
only person conducting repairs on the cluster, I had to only check my own mail. When there
was a problem with the cluster, I often sent out mail to people in the Tertiary Disk project
detailing the problem and the fix/repair I conducted. Also, when there was an item such as a
disk enclosure that had to be sent back to the manufacturer for repair and I asked the secretary
to talk to the manufacturer, or when I had to coordinate with a contractor to have the faulty
Ethernet cables repaired, the exchange was in the mail archive.

Post-It Notes
When I replaced a bad SCSI disk, I wrote down the date and a brief summary of the problem
on a Post-It note and attached it to the component before storing it away. Since these disks
were never sent back for repair, I could read off the notes to get a summary of the replacements
I made.

Combining these with the log files generated automatically, it was possible to correlate
almost all of the failures and repairs with error messages.
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5.2 Failure Summary

The frequency of failed and replaced components we have seen in 24 months of operation
is shown in Table 5.2. MTBF1 shows the particular component’s individual MTBF (mean time
between failures) and MTBFn is the collective MTBF of all components of the same type. Values
of MTBF are shown in years.

TTR (time to replace) is the approximate time to replace a component in minutes. Most of
the numbers were measured by taking the wall clock time during the repairs I conducted. Note that
this is just the time it takes to do the actual replacement of parts, intended to be used in calculation
of the amount of time the operator has to be physically be present in the machine room. The MTTR
(mean time to repair) as often noted in literature is the time it takes the operator to get to the machine
room plus the TTR numbers here. Since our system is designed to function with regularly scheduled
visits by the operator, we can assume MTTR is half the visit interval for all components in which
we have spare parts—the TTR can be ignored in the MTTR calculation, as it is much smaller than
the visit interval. For those without spare parts, it will be a function of the visit interval and the time
it takes for replacement parts to be shipped.

Infant mortalities are not included in the table. Initially, there were 6 enclosures with
bad power supplies, 9 enclosures with bad SCSI buses and about 20 bad Ethernet cables. Also,
components without any failures, such as CPU and enclosure fans, are not listed.

Component Total Failed Ratio MTBF1 MTBFn TTR
IDE drive 24 7 29.2% 6.9 0.29 60
SCSI adapter 44 1 2.3% 88.0 2.00 10
SCSI cable 39 2 5.1% 39.0 1.00 2
SCSI drive 364 8 2.2% 91.0 0.25 10
Disk enclosure (SCSI) 46 3 6.5% 30.1 0.67 60
Disk enclosure (power) 92 3 3.3% 61.3 0.67 5
Ethernet adapter 20 1 5.0% 40.0 2.00 10
Ethernet switch 2 1 50.0% 4.0 2.00 20
Ethernet cable 24 3 12.5% 16.0 0.67 10

Table 5.2: Frequencies of failures

Number of components and failures we observed are shown. MTBF1 is components’ indi-
vidual MTBF and MTBFn is the collective MTBF of all components of same type. TTR is
time it takes to replace failed component. MTBF is in years, TTR is in minutes.

Here are some observations:

� The Ethernet switch has too small a sample size to draw any meaningful conclusion. Nonethe-
less, it still underlines the importance of avoiding having a single point of failure—a lot of
our data would have been unreachable if we hadn’t designed the system in a way that there is
at least two distinct paths from any data to the outside world.

� On the other hand, the disk enclosures’ SCSI bus integrity and IDE hard drives are major
causes of concern. As can be seen from the TTR numbers, these are also the two hardest
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components to replace. We have investigated methods to boot the machines with CD-ROMs
as system disks to avoid the IDE hard disk problem altogether.

Another experience worth noting is that it is very hard to diagnose SCSI bus integrity prob-
lems. The problem can be in any of the SCSI host bus adapter, cable, disks, enclosures or
the terminator. In addition, simply replacing parts one by one is often not enough to find the
real cause—for instance, sometimes a faulty disk enclosure backplane will temporarily start
working again when a cable is replaced, giving the false impression that a cable is at fault.
This behavior is due to the nature of these problems, as they are usually caused by slightly
loose connections somewhere in the bus and can come and go with the slightest change. As
can be seen in Table 5.2, many of our problems were caused by the enclosures—we did not
experience any SCSI disk failure that resulted in the whole SCSI bus being reliable.

� Compared to the IDE drives, SCSI drives have been much more reliable, as 91 years MTBF
translates to about 800,000 hours. We suspect the difference is due to two factors: IDE drives
being of lower quality in general, and the superior cooling of external disk enclosures that
house the SCSI drives.

Also, we have been artificially loading the system to see if will cause more component
failures. The load didn’t seem to have any effect in component failure rates.

5.3 Hardware Error Details

More details on errors in Table 5.2 are given in this section. The actual methods of repair-
ing various components are also explained.

5.3.1 PC

Except for the internal IDE hard drives where the operating system resides, the comput-
ers themselves have been very reliable, with no errors on motherboards, CPU, memory, and other
components.

IDE Hard Drive

The internal IDE hard drives turned out to be the only unreliable part of the PCs. There
have been 7 disks that had to be replaced. It happened in August 1997, May, July, September, and
October (two) 1998, and June 1999.

It is not clear whether there is any correlation between these failures. There appears to be
a certain amount of clustering in July–October 1998, as there were 4 failures within a 4-month span
while there are only 3 more in the remaining 20 months.

Causes of Failure It is well known that heat and vibration are two external factors that often
contributes to disk failures. Vibration doesn’t seem to be a problem on our systems as the PC cases
and external disk enclosures are both mounted on a well-built rack, but the PC cases do not have
adequate ventilation in some areas, particularly around where internal disks are mounted. Therefore
I believe heat is one of the reasons why so many IDE hard drives have failed. This theory has also
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been supported by the fact that in other machines that are not part of this cluster, I have seen several
SCSI disks mounted inside the same PC cases fail, while identical disks in external enclosures have
not exhibited any failures.

I checked the log of the machine room’s air conditioner, but there wasn’t anything that
indicates an extended downtime anytime in 1998. There are two air conditioners in the room, so
even if one of them went down, the room temperature will still be controlled.

A possible explanation of the clustering of the failures is that all IDE hard drives, which
were shipped with the PCs to our site together, have been manufactured at around the same time
and have “aged” together, causing the failures to cluster somewhat.

The sample size is too small to draw any conclusions, but it still might be a good idea to
try purchasing disks from several sources, possibly from different manufacturers, when designing
a system such as this one, in order to reduce the risk of having several machines fail during a short
period of time.

In addition to the above, there have been two more disks that had several errors that didn’t
result in an immediate death. One of them had 14 failures in August 1998 (this disk was eventually
replaced in October after suffering 6 more failures), and another had 5 failures in September 1998
and 2 more in November. The second disk is still functional to this day, with no more errors logged
since then.

Replacing an IDE Drive It takes about one hour for an experienced operator to replace a failed
IDE hard drive. About half of that is spent in the physical act of replacing the disk, and the other
half in reinstalling the operating system. Here are the steps involved in replacing the disk.

1. Shut down the machine.

2. Disconnect all cables. The SCSI cables have two screws each that have to be loosened by hand.
Sometimes the receptacles of these screws, which happen to be screws themselves, come off the SCSI
adapters with the cables.

3. Remove the machine from the rack. The machine fits snugly in the shelves as two of the PC cases is
exactly the width of the 19-inch rack. However, this also means pulling out the machines requires a
fair amount of force.

4. Place the machine on a flat surface and open up two sides of plastic panels that can be easily snapped
off.

5. Turn the machine upside down and remove plastic panels from the other two sides. This involves lots
of practice and judicious use of two screwdrivers.

6. Remove four screws that are holding the disk drive in place.

7. Remove the IDE and power cables from the drive.

8. Replace the disk with a new one.

9. Reconnect the cables.

10. Reattach the four screws. Two of them are only accessible through holes roughly 2cm by 2cm on the
metal case and have to be inserted into screw holes about 5cm away than the metal surface.

11. Put the plastic panels back. Be careful not to break them, as putting them back is almost as hard as
taking them off and protruding parts have to be inserted in just the right order while sliding the panels
around to hold them together.
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12. Push the machine back into the rack.

13. Reconnect all cables.

14. Power up the machine.

From steps 5 through 11, it is obvious that these particular PC cases were not designed
with installation and deinstallation of internal disks in mind. If there is any lesson learned from this
experience, it is that in order to ease the system administrator’s burden, it is important to actually
open up the machines and try replacing some parts before purchasing them in quantities. Rack-
mount PC cases are generally easier to handle in this respect.

The operating system installation is done by first making an identical copy of the system
disk from another machine, and then editing a file to give it the right hostname. The copying
takes about half an hour. By keeping spare system disks ready to be swapped in, this wait can be
eliminated.

5.3.2 Network

The university has experienced a few network problems that disconnected the entire
Berkeley campus from the outside world. Most recent of those occurred on July 1, 1999, when
a broken water main caused the machine room holding the network hub to be flooded for a few
hours. We have not had any problems between our cluster and the campus backbone. The following
are are the problems we had inside our system.

Ethernet Cables

The Ethernet cables for the cluster were cut and installed on site by a contracted techni-
cian. Apparently this person had a bad tool and many of the connectors were not clamped properly.
Out of the 42 cables, including spares, installed, about 20 were not working from the beginning.

After those were redone, the cables have been fairly reliable, with only three more failures
the rest of the way. However, two of those happened when the machine room was reconfigured and
the cables had to be unplugged temporarily. The implication of these recent problems is that the
“working” cables might also be suffering from bad craftsmanship. From experience, I know that the
three out of 24 figure is still too high for Ethernet cables.

Assuming there are enough spare cables installed on the racks, replacing a failed cable
can be done just by unplugging and plugging both ends of the cable. In the long run, the unused
bad cables will also need to be replaced. With ample supply of cables that the operator can use to
replace, it will not take long to replace them.

Network Switch

One of our two 16-port network switches suffered a complete failure on November 1997.
All hosts connected to that switch were unreachable until I noticed the problem and moved the
cables over to an old network hub which was acting as a spare at the time.

The replacement switch arrived five days after the failure. The physical replacement of
the switch was easy, as it involved removing just two screws in the front and pulling out the switch.
The switch also had to be initialized by a special software from a portable computer connected to
the serial port of the switch chassis. It took about 20 minutes in all.
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Network Interface Card

The Ethernet cards on one of the machine suddenly stopped working on August 1997 and
had to be replaced. The replacement took about five minutes. The steps are much simpler than those
for IDE hard drives described in Section 5.3.1, as only the two easily removable panels have to be
snapped off before the card can be removed by loosening two screws.

5.3.3 The SCSI Subsystem

The SCSI subsystem consists of various components. I have categorized them into three
parts, the disks themselves, components that support the integrity of the SCSI bus, and the host bus
adapters.

SCSI Disk

Our SCSI disks have two vastly different characteristics—reliable hardware and flaky
firmware. This section analyzes those in detail.

Removing a SCSI disk involves shutting down the machine, powering off the enclosure
and sliding the disk out. Installation of a new disk is just the opposite. New disks have to be mounted
in canisters with four screws. It takes about 10 minutes in all.

On a partially related note, in April of 1999, one of the new departmental file servers had
problems triggered by a disk failure. Several drives failed in a chain reaction and some filesystems
were lost even though the system had RAID-5 protection. The system administrators have provided
a detailed write-up on the problem for circulation in the department. According the report, the
vendor contended that the problem was caused by disk firmware revision mismatches. However, I
suspect there were bugs in the RAID driver or operating system that were triggered by the firmware
bugs that compounded the problem to the point that the server had to be taken off-line for a few
days and lots of data lost.

Hardware There have been relatively few SCSI disk failures. Only 8 of the 364 disks in the
system had to be replaced. These failures have happened in August, September, December of 1997,
two in February of 1998, and one each in May, August, and October of 1998. From this data, there
does not appear to be any clustering, although we haven’t seen any failures for 8 months. Load
doesn’t seem to have any effect on SCSI disk failures, as only 1 of the 8 failed disks were on the 8
(out of 24) machines with artificial loads.

Figure 5.2 summarizes the disk errors I found in the logs. Three of the disk replacements
predate the logs so I couldn’t determine whether there were any error messages before the failures
for them. Including the total failures, there have been 13 disks with read errors and 10 with write
errors. None of them had more than one sector that was unreadable or unwritable. All of those were
still unreadable after retries, resulting the kernel returning an error to the application requesting the
data. Two disks had both read and write errors, and 9 more could be attributed to bad enclosures.
Subtracting those and the ones that were replaced, there are 8 disks that had an unrecoverable error
that can’t be attributed to anything else, but are still working fine to this day.

There have also been 1,958 recovered read errors on 26 disks and 977 recovered write
errors on 2 disks. Most of these were on disks that eventually failed.
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Disk ID Unrecovered errors Recovered errors Replaced?
(machine:disk) Read Write Read Write Disk Enclosure

m0:5 431 Y
m0:73 1
m0:76 1
m1:41 1
m1:44 5
m2:4 8 Y
m2:8 1 Y
m2:9 10 Y
m2:10 16 Y
m2:15 1 1 Y
m2:53 1 Y
m2:56 1 Y
m3:13 4
m4:0 1
m4:31 1
m5:0 1313 Y Y
m5:1 2 Y
m5:4 1 Y
m5:8 1 Y
m5:9 1 Y
m5:32 1 Y
m5:33 1 Y
m5:45 1 Y
m6:1 1
m7:9 1 1 140 14 Y
m9:40 2
m10:41 1
m10:5 2
m11:2 1
m11:9 1 7 963 Y
m14:1 1 3 Y
m14:4 1
m14:42 1
m14:45 1
m15:0 1
m15:1 2
m16:0 1
m16:2 1
m16:43 1
m17:33 1
m17:41 1
m18:5 3

Figure 5.2: SCSI disk read/write errors
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Firmware There appears to be a bug in the firmware of our SCSI disks [GM99]. In short, when
there is heavy traffic on the SCSI bus, a disk can lose track of its state and stop responding to
commands. There has to be several disks, at least four or five, on the same SCSI bus, all accessed
heavily at the same time for this to happen. The only way to get the disk to start responding again
is by sending a SCSI bus reset or a power cycle to reinitialize its finite state machine. We had the
SCSI driver modified by the FreeBSD SCSI team to try to detect a hanging disk and restart it with a
bus reset, which enabled us to fix most of the potential problems, but there are still some instances
which couldn’t be corrected automatically. As shown in Figure 5.1, these appear in the log as SCSI
timeouts.

Almost two thirds of the 364 SCSI disks (235) in the system has suffered from this tempo-
rary amnesia. There are 6,540 timeout messages recorded in the logs. Some of these are benign, but
others are more serious. The driver gave up on 23 of these cases, causing the kernel to stop sending
commands to those disks. The only way to access the disk again was by rebooting the machine.
Many others caused access to the disks hanging indefinitely, sometimes hanging or crashing the
operating system in the process.

Since this particular problem is quite specific to our system, and can be avoided by thor-
oughly testing the disks before selecting a particular brand for purchase or upgrading the firmware
on disks as necessary, I have chosen to ignore them for the purpose of my simulation.

By the way, in order to upgrade the disk firmware, the machines have to be booted into
MS-DOS to run a program supplied by the vendor. Since most of our machines don’t have key-
boards or monitors connected, this involves moving many disks around and with the SCSI enclosure
problems we were having, we were afraid this could cause more problems than it will solve. This
awkwardness is the reason why we have not upgraded the firmware on our disks despite occasional
crashes it causes.

SCSI Bus

There are three components that can cause SCSI bus integrity problems—cables, enclo-
sures and termination. Termination, either in the form of external terminators or internal to the SCSI
host bus adapters, has never failed on our system.

SCSI Enclosures
The SCSI enclosures has been the biggest disappointment of our system. As shipped, nine
of the enclosures had SCSI bus integrity problems. During the operation of the system, three
more developed similar problems, one in May 1998 and two in November, and had to be sent
back to the manufacturer for repairs. There is at least one more enclosure in the cluster that
sometimes develops problems when a disk is unplugged and plugged back in.

Replacing SCSI enclosures take at least two people to lift them. It is ideal to have three as
the enclosures are a little wider than the racks and thus the racks have to be pushed aside by
screwdrivers while inserting the enclosures. In addition, the disks have to be moved from the
old enclosure to the replacement, as well as two SCSI cables and four power cables reinstalled.

Three of the disk enclosure power supplies died during operation. Six more were bad as
shipped, or died shortly after installation. Since our enclosures have hot-swappable dual
power supplies, none of these affected operation of the system. Replacing the power supplies
are very simple, involving just one screw and reinstalling the power cable.
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SCSI Cables
The external SCSI cables have been fairly reliable, with only two having to be replaced in
two years. They can be replaced very easily.

SCSI Host Bus Adapters

Only one of the SCSI host bus adapters failed on our system. One of the chips on the
adapter literally burned out. SCSI adapter cards are as easy as the network cards to replace.

5.4 Software Errors

Compared to hardware, the software on our systems has been remarkably reliable.

5.4.1 Operating System

As far as I can tell, there have been no crashes due to a bug in the operating system during
the period. Even though I don’t know the exact cause of all the crashes and hangs, as many of those
didn’t leave a log or crash dump that I can analyze, I believe all the OS crashes can be attributed to
disk firmware problems for the following reason.

One of the machines,stampede , is an NFS server for the entire Tertiary Disk cluster as
well as some other machines in the department. In addition to being an NFS server,stampede
runs an HTTP proxy, a small anonymous FTP server and mailing list server.Stampede has been
used much more heavily than of the machines in the cluster, was crashing almost daily when it had
the same disks as others.Stampede has not had a single crash in the two years since I replaced
the disks with those from another manufacturer.

Also, I have been watching the console messages of some machines on their serial ports
as they either hung or crashed. In every one of the dozen or so cases I have observed, there was a
message indicating a disk firmware problem just before the machine hung or crashed.

5.4.2 Application

The HTTP server has died 11 times during the 30-month period. 10 of those were bus
errors and 1 was an abort signal. All of the bus errors happened when the operating system was
upgraded while the HTTP servers were running. Such crashes usually result when a shared library
is changed while an application is running—the in-memory version of the shared library can be out
of sync with the version on disk. Since the machines are subsequently rebooted, these errors were
not repeated.

As the frontends were instructed not to forward requests to machines that were being
upgraded, none of these were visible to the users. This leaves only one crash, the one caused by the
abort signal, as a legitimate crash of the HTTP server caused by a software bug.

This result is in stark contrast to Jim Gray’s 1985 study on failures, in which he observed
that 25% of system failures are caused by software [Gra85]. This difference is probably due to both
the operating system and application on our site being relatively stable versions. If we counted the
number of application crashes during the period when it was still under heavy development, the
system would have had a much higher software failure rate.
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5.5 Summary

We have been observing our system since we constructed it. Records of replacements,
which, with system logs of the operating system, were analyzed to determine the failure rate of each
component. Although we have lost some of the logs, I believe we were able to determine the failure
rates with good accuracy.

The SCSI disks’ failure rates were consistent with what were advertised by the manu-
facturer; those of IDE disks and external disk enclosures were not. There didn’t appear to be any
correlation between separate failures. The operating system and applications were surprisingly re-
liable.

The data collected in this chapter is used in the next chapter as default parameters for the
simulator to determine the availability of our system and variations of it over a long period of time.
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Chapter 6

Validation

I ran experiments to validate the feasibility of our approach. The objective was to prove
that the system will actually run continuously and flawlessly in the existence of a variety of failures.
A simulator, in conjunction with an event generator, was used to calculate the expected downtime
and time between failures depending on several parameters such as component failure rates and
repair interval. By running a simulation over a long period of time, I was able to obtain a good
estimate of availability and times before failures.

The simulator models the system as a directed acyclic graph (DAG) of nodes and arcs.
A node represents either a hardware component, such as a disk, or an abstract concept, such as
“data” or “users”. The system is functional if all the “data” are connected to the “users”. Using this
method, I reduced the availability question into a simple graph connectivity problem of the DAG. I
believe this novel approach is an advance over a more detailed model of the system.

Figure 6.1 shows a simple example. Data is mirrored on two disks on two different ma-
chines. Users are on the same local Ethernet segment as the servers. Power supply and cable failures
are ignored. There are two paths from Data to Users. If either one of Route A or B is complete, the
system is functional. However, if both Route A and B are disconnected—for instance, if PC A and
Disk B are broken at the same time—then the system has suffered an outage.

There are two types of nodes:Data nodes allow data to flow through them;powernodes
are power supplies that don’t carry data but instead control functionality of other nodes. Nodes as-
sociated with hardware components will sometimes break and affect the availability of the system.
Table 6.1 classifies various types of simulator nodes. Various abstract concepts and their implemen-
tation in the simulator are explained in Section 6.1.2.

Type Represents Examples

Hardware SCSI disk, SCSI adapter, SCSI cable,
Data Ethernet cable, Ethernet switch

Abstract data, users, striped set, dataset
Power Hardware UPS unit

Table 6.1: Simulator nodes

In my simulator, anarc generally denotes a connection where data can flow from one
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Figure 6.1: A simple connectivity graph

node to another. Some arcs convey other special information, such as “electric power”. Arcs never
break in my simulator. Note that “cables” in our system are represented as nodes, not arcs; for
instance, Ethernet cables connecting Ethernet adapter cards on individual PCs to the central switch
are implemented as in Figure 6.2. By using nodes to represent cables, it became possible to simulate
cables with multiple endpoints, such as double-ended SCSI buses.

The failure data mentioned in Chapter 5 was used to design the input to the simulator.
In addition to running the simulator on a configuration similar to ours, I have also tried different
configurations, such as with or without double-ending, different number of disks per PCs, and so
on. Some simulations were done to answer “questions” in the form of English sentences—for
instance, “what will it take to build a system with 99.999% availability?” They are all described
later in this chapter.

6.1 Simulation Setup

I wrote an event-driven simulator to use the data we collected to experiment with various
design parameters. The parameters include: different repair intervals, systems with and without disk
striping, systems with and without fast reboot optimizations, different disk failure rates, and so on.
The simulator also allowed us to investigate radically different designs, such as having significantly
more disks per machine or not having double-ending.

The simulation setup consists of two parts: the eventgeneratorand thesimulator. The
generator generates random events based on parameters given to it. The simulator reads the output
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of the generator and emulates the system’s behavior. The simulator is designed to analyze the flow
of data in the system as a graph connectivity problem and detect possible outages.

6.1.1 The Generator

The design goal of the generator was to be able to generate events in a realistic manner
according to the reliability observations we have made on our system over the course of the project.
The events follow the exponential distribution and are not correlated to each other.

Generator Parameters

Table 6.2 shows general command-line options to the generator. The random seed is
used as an argument to thesrandom() function call to set the initial seed to the pseudo-random
number generator. By setting this to a specific value, we can repeat the simulation with identical
set of events. By default, the pseudo-random number generator is initialized by the process ID of
the generator process, making the output different every time when it is run repeatedly. The-size
option will dramatically expand the size of the system; it is used in Section 6.3.11.

Table 6.3 shows the options to specify the number of components and their average life-
time. Note that the average lifetimes are for individual components; for example, with 512 disks,
there will be approximately five failures per year if each disk has a 90-year average lifetime with
exponential distribution. It is also possible to specify the number of each component. Numbers of
some components are related; for instance, the number of Ethernet adapters are equal to the num-
ber of PCs, and the number of SCSI cables are twice of the number of disk enclosures because of
double-ending. The related components are denoted by “�n” in the table, and their numbers can be
changed together by specifying only one option. I rounded up the default number of components to
the closest power of 2 from those of our system to make it easier to test different configurations.

As mentioned above, most of the default failure rates are taken from data described in
Chapter 5. The exception to this is the Ethernet switch, which had one failure out of two compo-
nents, or a 50% failure rate in three years. It is obvious that the sample size is too small to draw any
meaningful conclusions about them. I assigned a default failure rate of zero to Ethernet switches,
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Option Description Default
-d Duration of simulation 100,000 years
-s Random seed process ID
-ri Repair interval (visit frequency) 1 week
-rt Reboot time 60 seconds
-size Multiply size of entire system by integer1

Table 6.2: Generator general options

Number Average lifetime
Component Option Default Option Default
Disk -nd 512 -da 90 years
PC -npc 32 -pa 7 years
Operating System -npc 32 -osa 1

UPS -nups 16 -ua 1

SCSI adapters -nenc �2 64 -saa 90 years
SCSI cables -nenc �2 64 -sca 40 years
Disk enclosures (SCSI) -nenc 32 -esa 30 years
Disk enclosures (power) -nenc �2 64 -epa 60 years
Ethernet adapters -npc 32 -eaa 40 years
Ethernet cables -npc 32 -eca 16 years
Ethernet switches -nes 2 -ewa 1

Table 6.3: Generator component options
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B/R name number time
---------------------------
B etheradapter 11 2546387
R etheradapter 11 3024000
B PC 0 4345488
R PC 0 4838400
B ethercable 16 5459964
R ethercable 16 6048000
B disk 153 9387963
B encpower 20 9436074
R disk 153 9676800
R encpower 20 9676800
B encscsi 26 10826452
R encscsi 26 10886400

Figure 6.3: Sample generator output

along with UPS units, which did not fail during our project’s duration, as I did not want to assign an
arbitrary number for something we did not know. The effect of these parameters, as well as others,
are explained in Section 6.3. The failure rates of Ethernet switches and UPS units did not have much
effect on the the overall performance of the system.

We did not observe any operating system crashes, but by specifying the-osa option, it
is possible to simulate randomly crashing operating systems. The-rt option in Table 6.2 can be
used to specify the amount of time it takes for the operating system to recover from a crash with a
reboot.

All failed components except the operating system are assumed to be repaired when the
scheduled operator visit occurs—this is not an unreasonable assumption since all that are needed
are enough spare components. The repair interval is specified by the-ri option.

Generator Output

Figure 6.3 shows some lines from a sample run of the generator. The fields are, from left
to right,

break/repair component-name component-number time

The first field is “B” when a component breaks and “R” when it is repaired. The next field
is the type of the component and and integer identification number. The last field is the number of
seconds since the simulation has started. For instance, the first line of Figure 6.3 means “Ethernet
adapter card number 11 broke 2,546,387 seconds after the simulation was started.”

6.1.2 The Simulator

The other program, the simulator, reads the output generated by the generator and deter-
mines the system’s behavior. The simulator keeps track of the failures and notes the fact when some
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of the data becomes unreachable. At the end, it will print out a summary of the system’s availability.

Simulator Architecture

The simulator treats the system as a DAG. A node of the graph is either a hardware compo-
nent, such as a disk, or an abstract concept such as “data” or “users”. Some hardware components,
such as power supplies, have more than one corresponding node in order to model the behavior
better. An arc generally denotes a connection where data can flow from one node to another. Some
arcs convey other special information, such as “electric power”. As mentioned above, the system is
functional if all the “data” are connected to the “users”.

Nodes There are two types of nodes in the system. Most of the nodes aredata nodes, which denote
places through which data can flow. There is also a special type of node for uninterruptible power
supplies, calledpower nodes. Power nodes don’t handle data; they supply power to data nodes.

Data Nodes Data nodes carry data. There are two types of data nodes,OR-nodes andAND-nodes,
depending on how failures of a subset of its descendants are handled.

OR-Nodes The double-ended SCSI cable in Figure 6.4 is anOR-node. From anOR-node,
the data can flow in either direction. If the data eventually gets to the destination from
any of the direct descendants, theOR-node is said to be connected to the destination. I
use the “plus-in-circle” symbol to denote anOR-node in the figures.

AND-Nodes The striped virtual disk in Figure 6.5 is anAND-node. AnAND-node is con-
nected to the destination only if all of the immediate descendants of the node are con-
nected to the destination node. In particular, if any of the immediate descendant of an
AND-node fails, theAND-node itself will be disconnected. I use the “times-in-circle”
symbol to denote anAND-node in the figures.

Most data nodes of the Tertiary Disk system graph areOR-nodes. The only components that
are pureAND-nodes in our configuration are data and striped sets. Note that if a node has only
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one descendant, it can be called either anOR- or AND-node and have the exact same behavior.
In such cases, I have omitted the circle symbols.

Power NodesPower nodes represent uninterruptible power supplies. They also have arcs that
connect them to other components but these arcs don’t represent flow of data—they are power
cables. If a power node goes down, it will take down all the components connected to it.

Simulator Details

As mentioned in the previous section, the simulator builds a DAG and analyzes its con-
nectivity to determine the system’s functionality. However, the DAG does not simply reflect the
connectivity of the hardware of the system. Some of the nodes, such asdataandusers, are abstract
concepts that don’t have corresponding hardware; some others, such as redundant power supplies,
require special handling to model their behavior with a simple DAG. This section explains how
some parts of the system are represented in our simulator.

Data The data is divided intodatasetsand spread around the entire cluster. By default, datasets
are mirrored and reside on striped sets by default. If any of the datasets are unavailable, the
system is said to have suffered an outage.

To model this, I use a singleAND-node called “data” that has all the datasets as immediate
descendants. The connectivity from the datasets depend on the configuration of the system.
Figure 6.6 shows how the data is connected to the striped sets in the default configuration
using mirroring. Note that the data is anAND-node while the datasets areOR-nodes.

Striped Sets As shown in Figure 6.5, a striped set of multiple disks can be represented as anAND-
node with all the disks in the set as its descendants. A concatenation set, where the individual
disks are serially concatenated instead of having data striped across them, is similar—the
only difference with a striped set is the actual data layout on the physical disks, which has no
bearing upon the connectivity of the system.
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Figure 6.6: Data, datasets and striped sets

It is worth pointing out that, as an extension, a parity-based RAID-5 array can be represented
as a variation of anAND-node whereall but oneof the descendants have to be connected for
the node to be functional. Another way to look at this is to count the number of descendants
that have to be connected for a certain node to be connected. Let’s call this number the
connectivity factor. For a node withN descendants, anAND-node has a connectivity factor
of N , anOR-node has1 and a RAID-5 node hasN � 1. By making this an arbitrary number,
we can simulate other designs such as P+Q RAID, which has a connectivity factor ofN � 2.
See Table 6.4 for a summary.

Name Connectivity factor Comment
Mirror 1 OR-node
Striped set N AND-node
Concatenated set N AND-node
RAID-5 N � 1

P+Q RAID N � 2

Table 6.4: Connectivity factors

Power Failures A power supply is represented by adding an extra node behind an existing one as in
Figure 6.7. This extra node is added even if we don’t simulate failures for this particular type
of power supply to make the graph easy to construct and understand. Power supply nodes are
connected to the UPS (power) nodes.

Redundant Power SuppliesRedundant power supplies such as those found in our SCSI enclo-
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sures can be emulated by dividing the nodes into sub-nodes as shown in Figure 6.8. The
enclosure itself is duplicated in two places—the in-node (frontend) and the out-node (back-
end). Data flows into the in-node and out of the out-node. Between the in-node and the
out-node are the power supplies. The dotted line that surrounds the in/out-nodes and power
supplies is the enclosure as seen from the outside.

Out-node

Enclosure

Power Supplies

In-node

UPS UPS

Figure 6.8: Redundant power supplies

The “real” enclosure can be thought as being either the in-node or the out-node, but it is
probably easiest to consider the entire contents of the dotted lines to be the enclosure. The
important characteristic of this combined node is that even if either of the power supply or
UPS fails, data still flows in and out of the enclosure, while if both power supplies lose power,
the enclosure will be dysfunctional.

In my simulator, an enclosure failure is treated as an in-node failure.
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Simulator Parameters

By default, the simulator will construct a system with 32 PCs and 512 disks in a double-
ended configuration. For simplicity, 16 disks are put in one enclosure, although a real wide-SCSI
bus can only address 16 devices, and thus cannot support 16 disks in addition to the two SCSI
adapters required for double-ending on one bus. Double-ending and mirroring can be turned off by
command-line options. Note that the-mirror option actually specifies the number of replicated
copies of data:-mirror 1 will turn mirroring off; -mirror 4 will specify a 4-way mirror.

Table 6.5 shows all the parameters to the simulator. By default, the simulator runs until
the input from the generator is exhausted, but it can be stopped before the end of input by specifying
the -d option. Verbose descriptions of each outage can be generated with the-v option. It is also
possible to specify numbers of each individual components. As was the case with the generator,
some options change the number of more than one component; for instance, if you specify-nenc
16 with double-ending, there will be 16 enclosures, 32 enclosure power supplies, 32 SCSI cables
and 32 SCSI adapters. The-size option will make the entire system larger by simply multiplying
the number of all components.

Option Description Default
-d Duration of simulation until end of input
-nde Turn off double-ending false (enable double-ending)
-v Turn on verbose output false
-mirror Mirroring factor 2
-nd Number of SCSI disks 512
-nccd Number of disk stripe sets 32
-nenc Number of disk enclosures 32
-npc Number of PCs 32
-nups Number of UPS units 16
-size Multiply size of entire system 1

Table 6.5: Simulator parameters

Simulator Output

The simulator, without the-v option, outputs just one line of summary information such
as the following:
185 breaks (9678 h) ave 52 h (0.97 h/y), avail: 99.98895%, MTBF 54.05 y (473514 h)

This line means the simulator detected 185 outages totaling 9,678 hours over 10,000 years for an
average of 52 hours per outage and 0.97 hours of outage per year. The availability of the system
was 99.98895%, and the mean time between failures (MTBF) was 54.05 years, or 473,514 hours.

The most interesting numbers here are the MTBF and outage hours per year. One goal
of our system design was to create a large-scale storage system with an MTBF figure comparable
to a single disk. With manufacturers’ quoted MTBF figures for high-end SCSI disks being a few
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hundred thousand to a million hours (about 30 to 110 years), a number with six to seven digit hours
here means our system has attained the goal.

On the other hand, the outage hours per year is more intuitive and is easier to understand
and compare. We cannot compare this number with disks—once disks fail, they generally stay
failed, so disk drive manufacturers don’t quote outage hours per years for disks—but we can com-
pare it with high-availability systems. For instance, Jim Gray mentions in a paper that, in 1989,
Tandem systems had system MTBF of 21 years and a MTTR of 10 hours, which translates to about
0.5 hours of outage per year [Gra90]. Also, some manufacturers claim 99.999% availability for
their server systems. That translates to about 0.09 hours, or 5 minutes, of outage per year.

6.2 Alternatives to Simulation

Although the highly redundant design makes our system hard to approach analytically,
there are alternatives to event-driven simulation. One of them is to use a Bayesian network. Al-
though Bayesian networks are primarily intended for static probability analysis, it is possible to
employ them in a time-based problem like ours. However, for a system with a few hundred nodes,
the computational complexity of estimating the availability using Bayesian networks is very high.

There are some additional problems with using Bayesian networks to evaluate our system.
One is that the operator visiting to repair failed companents means we can no longer calculate the
probability of two components failing at the same time as a product of the probability of each
component failing; the failure intervals of components are no longer independent. Also, with an
event-driven simulator, it is trivial to explore additional repair policies—for instance, the operator
visits only when there aretwo or morefailed components—but such additional dependencies will
make the transition matrix of a Bayesian network much more complicated. Therefore, we decided
to use an event-driven simulator to evaluate the system.

6.3 Simulation Results and Exploration

The simulation was run under several conditions. First, the behavior of the base system,
with hardware configuration and failure parameters similar to the system we have, is presented and
analyzed. Subsequently, variations to the systems are introduced.

The simulator was used to answer several questions to further understanding about our
design and choice of architecture. Here are the questions with their corresponding section numbers.

6.3.1 What are the availability characteristics of our default system?

6.3.2 What are the effects of individual component failure rates?

6.3.3 How much time does the operator actually spend conducting repairs? Is there some way to
schedule repairs more efficiently?

6.3.4 How much will the repair interval affect reliability?

6.3.5 What is the effect of disk striping?

6.3.6 How valuable is mirroring?
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6.3.7 How about RAID-5?

6.3.8 How valuable is double-ending of SCSI disks?

6.3.9 Will operating system crashes affect availability? How much will reboot time after a crash
affect availability?

6.3.10 What is the effect of decreasing or increasing the number of disks per PC?

6.3.11 How will a system 10 times as big as the current one behave? How can I make it as reliable
as the current one?

6.3.12 What will it take to build a system with 99.999% availability given the current component
failure rates? What about 99.9999%?

The following sections will explore these questions in detail.

6.3.1 Overview

“What are the availability characteristics of our default system?”
The default system had a MTBF of 630,000 hours (70 years) and an availability of

99.990%, or 0.8 hours of downtime per year. The average downtime per failure was 57 hours.
In other words, on average, the system will go down once every seven decades, and when it’s down,
it takes about two and a half days on average to recover. Note that the operator comes in to repair
any failed component every seven days—the time to recover is obviously quite strongly affected by
the repair interval, as can be seen below.

6.3.2 Failure Rates

“What are the effects of individual component failure rates?”
The failure rates of each component has differing effects on the behavior of the entire

system. Let’s take a look at how they affect the overall system reliability.

SCSI Drives
By far the largest portion of failures come from SCSI drives. Figures 6.9 and 6.10 show the
relationship between SCSI drive failure rates and availability. As mentioned above, with the
disk failure rates we observed, one failure every 90 years, the outage per year is just under 1
hour, and the MTBF is 70 years. Manufacturers often quote 1 million hours MTBF for their
high-end SCSI drives; that translates to about 114 years, so our whole system MTBF is close
to that.

As can be seen from the graphs, if the disks become more reliable in the future, the MTBF of
the system could go up to over 1,000 years and outage down to less than 0.1 hours per year
before other factors start dominating the characteristics of the system. On the other hand, with
unreliable disks, the system reliability could go down very quickly. For instance, if the disks
have only one tenth average lifetime than what the manufacturers claim, the outages will be
44 hours per year (99.5% availability) and the MTBF will be about 1.3 years.
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Figure 6.9: SCSI drive failure rates and availability
(Dotted line indicates observed value)
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IDE Drives
Figure 6.11 shows the relationship between the PC’s internal IDE drive failure rates and the
outages. The disk failure rates we observed was one failure every 7 years. Manufacturers usu-
ally quote about 300 thousand hours as IDE drive MTBF, which is about 34 years. Since we
are already in a fairly flat part of the graph, our higher failure rate didn’t affect the availability
much. However, without double-ending, the IDE drive failures have a profound impact on
system availability; see Section 6.3.8 for details.
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Figure 6.11: IDE drive failure rates
(Dotted line indicates observed value)

UPS
Figure 6.12 shows the relationship between the UPS failure rates and availability. We didn’t
observe any UPS failures so the range of failure rates is totally arbitrary. It is apparent from
the graph that UPS failures does not have a large impact on our system, as long as MTBF is
greater than 1 year.

Ethernet Switches
Figure 6.13 shows the relationship between the Ethernet switch failure rates and availability.
We did observe one failure out of two switches in three years, with an average component
MTBF of 6 years. It is apparent from the graph that Ethernet switch failures does not have a
large impact on our system, which is a testimony to our double-ended configuration.

Others
As can be seen in Figure 6.14, the failure rate of SCSI adapters seem to have a very little effect
on overall MTBF. Our observed rate of once per 90 years is already in a very flat position of
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Figure 6.12: UPS failure rates
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Figure 6.13: Ethernet switch failure rates



68

the curve. The same can be said for all other components, namely SCSI cables, disk enclosure
power supplies, disk enclosure SCSI bus integrity, Ethernet adapters and Ethernet cables.
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Figure 6.14: SCSI adapter failure rates
(Dotted line indicates observed value)

Figure 6.15 shows the effect of SCSI drives, IDE drives and SCSI adapters. Since each
component has different observed lifetimes, I normalized the horizontal axis to align their average
lifetime along our observed values. Thus, the dotted line marked “1” is our observation. It can be
seen from this graph that any difference that reliability of IDE drives or SCSI adapters make are
insignificant compared to SCSI disks.

To summarize the effect of component failure rates on system reliability:

� SCSI disks have by far the largest effect on system reliability, with an almost linear relation-
ship.

� We couldn’t get enough data on UPS units and Ethernet switches, but judging from the shapes
of curves, they don’t seem to matter much.

� No other component has a significant effect on the system reliability either.

6.3.3 Operator Cost

“How much time does the operator actually spend conducting repairs? Is there some way to sched-
ule repairs more efficiently?”

Figure 6.16 shows how long it takes for an operator to do the job. The two lines are
minutes per visit that the operator spends conducting repairs. One of them is divided by the total
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Figure 6.15: Effect of component failure rates

number of repair intervals; the other one is divided by the number of times that the operator actually
has something to repair. As can be seen from the upper line, the latter number tails off at about half
an hour per visit.

Figure 6.17 shows the ratio of repair intervals during which a failure has occurred. With
a one-week repair interval, the operator has to conduct a repair only 28% of the time. The time
between failures on our system is about 21 days. In other words, a repair is necessary once every
three weeks, and as the repair interval decreases, the ratio of visits that are actually necessary also
decreases quickly.

See the next section for discussion on how to efficiently schedule repairs to reduce the
cost while maintaining high availability.

6.3.4 Repair Interval

“How much will the repair interval affect reliability?”
Figures 6.18 and 6.19 show the effect of varying the repair interval. As mentioned before,

with the standard 1-week interval between operator visits, the MTBF is about 70 years. By more fre-
quent visits, we can increase this to a much greater number and reduce the downtime. For instance,
with a once-per-day visit, the downtime per year will be 0.03 hours, or 2 minutes, per year, and
the MTBF will be 260 years; availability is 99.9997%. On the other hand, with a once-per-month
visit, the outage per year will rise to 15 hours. That is more than a fifteen-fold increase compared
to systems with weekly visits. Also, the MTBF will go down to 15 years. The MTBF might be still
acceptable in some cases, however, the outages, averaging just under 10 days, could last as long as
a full month.
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(Dotted line indicates default)
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With a once-per-year visit, the system will have a MTBF of less than 2 years. That means
the chance that the system is operational when the operator shows up is less than 50%. Also, the
outage per year is close to 2,000 hours—almost 3 months.

According to these numbers, by picking one week at the beginning of the project, it ap-
pears we have made an extremely lucky guess for what an repair interval would be for our system
that keeps administration costs down while having excellent availability. If we wanted the highest
availability, we would hire people to maintain the system 24 hours a day. Such vigilance would
probably cut MTTR to 2 hours, yielding an availability of 99.999999%. When computer manufac-
turers claim 99.999% availability, they usually assume constant attention to the system.

One interesting observation is that, combined with the results from the preceding section,
it should be able to effectively reduce the repair interval without actually having the operator visit
the site every time. For instance, according to Figure 6.18, an 18-hour repair interval will increase
the availability of the system to 99.9999%. However, Figure 6.17 show that repairs are necessary
only 3.5% of the time with the 18-hour interval. Note that the “18-hour repair interval” here means
the operator has to come in within 18 hours of the failure, and not necessarily every 18 hours if there
is nothing to fix.

With this in mind, consider the following arrangement with the operator that we callPager
Arrangement, as opposed to the traditionalFixed Intervalmethod:

� The operator carries a pager.

� If the system pages the operator between 7 AM and 3 PM, the operator should come in and
conduct the repair before 5 PM on the same day.

� If the system pages the operator between 3 PM and 7AM in the next morning, the operator
should come in and conduct the repair at 9 AM.

According to the Pager Arrangement, the operator will only have to come in once every 21 days,
or three weeks, to conduct necessary repairs. Figure 6.16 also shows that the time it takes for the
operator to do the job is roughly constant at half an hour for intervals less than a week.

Under this kind of arrangement, the availability will be slightly better than the Fixed
Interval 18-hour repair interval, since this is in effect a combination of 8-hour and 18-hour repair
intervals. See Figure 6.20 for a comparison between the Fixed Interval and Pager Arrangements. In
the Fixed Interval Arrangement, any failure that happened during an 18-hour interval will be fixed
at the end of that interval; with the Pager Arrangement, any failure in the 8-hour period between
7AM and 3PM gets fixed at 5PM with a maximum delay of 10 hours, and any failure in the 16-hour
period between 3PM and 7AM will be repaired at 9AM with a maximum delay of 18 hours.

As a variation of the Pager Arrangement, the operator can remotely check the status of the
system at 3PM and 7AM, and come in at 5PM and 9AM, respectively, if there is a need for repair.
In this case, the operator needs a network connection instead of a pager. The availability of this
system will be identical with one with the Pager Arrangement.

6.3.5 Disk Striping

“What is the effect of disk striping?”
As mentioned in Section 3.2.2, we use disk striping to combine multiple disks on one PC

into one large virtual disk. This merging is a tradeoff between operator cost and reliability: it is
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easier for the operator to handle data layout issues, especially filesystem full conditions, when there
are fewer and larger “disks”. It is also easier to tune the performance of the system, as striping will
inherently balance the load evenly among the disks in the stripe set. On the other hand, reliability
will suffer due to a disk failure making the whole dataset vulnerable.
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Figure 6.21: Stripe set sizes
(Dotted line indicates default)

Figure 6.21 shows how the number of disks on a striped set affects availability. Our default
is 16, meaning the 32 disks on a double-ended pair are combined into two striped sets, one per PC.
With our current software, the actual maximum is 32, since we do not have a network filesystem
or some other network striping software. Therefore, the figures for size 64 and larger are purely
hypothetical. On the other end of the graph, a size 1 stripe set is actually a single disk.

As can be seen from the figure, as the striped set size increases, the availability gradually
goes down. However, even at the maximum, when the entire collection of disks are divided into only
two stripe sets (for mirroring), the outage per year is only a little over 10 hours. With no striping, the
outage can be reduced to about one third of our default configuration, but with a significant penalty
in operator labor.

6.3.6 Mirroring

“How valuable is mirroring?”
Figure 6.22 shows how mirroring will affect availability. I changed the SCSI disk failure

rates and plotted the outage per year for no mirroring, 2-way mirroring, 3-way mirroring and 4-way
mirroring systems. If a particular plot ends in the middle of the graph, it means the outage has been
less than 0.01 hours per years to the right of the last point.
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Figure 6.22: Disk failure rates and mirroring
(Dotted line indicates observed value)

Without mirroring of data, the MTBF goes down to 1,300 hours (0.16 years) and avail-
ability to 93.9% (540 hours of downtime per year) with an average downtime of 85 hours. The
dominating factor is disk failures, as any disk going down will cause a failure.

With extremely reliable disks, the outage can be reduced to about 100 hours per year, but
this is still unacceptably high. With less reliable disks, the numbers are positively dismal without
mirroring. On the other hand, with 3-way or 4-way mirrors, the reliability goes up significantly.

6.3.7 RAID-5

“How about RAID-5?”
Can we substitute mirroring between machines with a parity-based protection scheme

within the same machine and still have the same kind of availability? The answer is no.
According to Figure 6.22, with no mirroring, the availability can only improve to about

99% even with infinitely reliable disks. A parity-based protection scheme within an enclosure or a
SCSI adapter will be limited by this number as an upper bound. In other words, a system without
inter-machine data protection simply cannot be made reliable enough because of other single points
of failure such as SCSI buses.

6.3.8 Double-Ending

“How valuable is double-ending of SCSI disks?”
With no double-ending, i.e., with each enclosure only connected to one PC, the availability

goes down to about 99.95%, or 4 hours of outage per year. This level is about five times what the
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current system offers. The MTBF goes down to about 14 years, or 125,000 hours, which is one
quarter of the current system.

Figures 6.23 and 6.24 show how double-ending affects availability. The horizontal axis
are average time between SCSI drive failures and IDE drive failures, respectively.
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Figure 6.23: SCSI drive failure rates and double-ending
(Dotted line indicates observed value)

We can see from Figure 6.23 that SCSI disk failure rates affect configurations with and
without double-ending. When the disk failure rates are very high, the two graphs coincide; when the
main reason for outages are data disk failures, adding connectivity to the system by double-ending
doesn’t improve the overall availability. When the disk failure rates are better, the overall system
availability will increase, but without double-ending, the improvement is limited, as the line without
double-ending tails off at about 2 hours per year, when other factors start dominating the availability.

Figure 6.24 provides a partial answer to that limitation: the IDE drive failures are almost
masked out when the SCSI drive are double-ended, but without double-ending, it greatly affects the
system reliability, as a single PC failure causes a few dozen disks to be disconnected temporarily.

Figure 6.25 shows how decreasing the number of disks per striped set will affect avail-
ability. Even without any striping, the outage per year can only be reduced to about 3 hours without
double-ending. The reason of this limitation is also because SCSI disk failures are no longer the
main cause of unreliability in the case without double-ending.

It is not really possible to create a system without double-ending with similar reliability
characteristics as our current system given our failure rates by just adjusting number of components.
For instance, adding more PCs will reduce the number of disconnected disks when one of the PCs
go down, but increases the chance that one of the PCs will be down at any given moment. The only
ways to significantly reduce the failures without double-ending are to reduce the repair interval or
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increase the number of mirrors of data.
Figure 6.26 shows the effect of repair interval on failures on systems with or without

double-ending. Repair interval of 3 days will reduce the outage hours per year to about 0.8 on
a system without double-ending, which is comparable to our double-ending system with a repair
interval of 7 days. As the two lines are roughly parallel, for the Tertiary Disk system it appears that
double-ending allows you to double the repair interval and yield the same availability.
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Figure 6.26: Repair interval and double-ending
(Dotted line indicates default)

Figure 6.27 shows how increasing the number of mirrors affect the downtime. With three
copies of data, a system without double-ending can be made more available than a double-ended
system with the normal two-way mirror.

6.3.9 Operating System Crashes

“Will operating system crashes affect availability? How much will reboot time after a crash affect
availability?”

Since we haven’t experienced any machine crashes caused by operating system bugs dur-
ing our project, the generator doesn’t generate OS-related reboot events by default. However, as
mentioned before, it can be made to generate those events by command-line switches.

Figures 6.28 and 6.29 show the effect of operating system crashes with the original reboot
time and fast reboot improvements. As mentioned in Section 3.3.2, the original reboot time was 22
minutes; with the fast reboot modifications, it was reduced to 1 minute.

As can be seen from Figure 6.28, even with very frequent crashes, there was virtually no
effect on outage hours per year. The reason why operating system crashes have very little effect on
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Figure 6.27: Mirroring and double-ending
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Figure 6.29: Operating system crashes and MTBF

outage hours is because the recovery time from such crashes is very small compared to hardware
failure repairs; thus, even if the system suffers an outage, it will recover very quickly, resulting in
little extra outage time. The difference between systems with and without fast reboot are within the
error range.

On the other hand, Figure 6.29 shows that the MTBF of the system will be affected with
frequent crashes. With operating systems that crash daily, the MTBF will be down to about 1 year
with normal reboots, and about 8 years with the fast reboot improvements.

6.3.10 Number of PCs per Disk

“What is the effect of decreasing or increasing the number of disks per PC?”
Intuition seems to suggest that, if you add more PCs to the system, the availability will

improve since there will be less things to be disconnected when a PC goes down. However, this is
actually not the case: with the increase in numbers of PCs comes more PC failures.

Figure 6.30 shows how little adding more PCs to the system helps availability. Further-
more, even with only two PCs, connected to all the disks on the system via double-ending, the
system availability suffers only a very small hit.

6.3.11 Total Size

“How will a system 10 times as big as the current one behave? How can I make it as reliable as the
current one?”

If we were to build a system that has more components, what will its characteristics be?
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Figure 6.30: Changing number of PCs

For instance, if we were to fill up the entire machine room with ten times as many disks and PCs,
how will it behave?

Figure 6.31 shows how availability is affected by the total system size. The simulation
indicates that degradation in availability is proportional to size. For instance, the outage average is
7.67 hours per year, about ten times that of the current system, for a tenfold system.

What will it take to bring such a system under control? From previous sections, we know
that increasing the number of mirrors, decreasing the stripe set size, and reducing the repair interval
are the only options.

I found that, with 3-way mirroring, the system’s outage will be down to less than 0.1 hours
per year. Note that replicating data in more places will reduce the effective capacity of a set of disks,
so the cost penalty is rather severe. For instance, a 3-way mirror will cost 50% more than a 2-way
mirror to construct given the same net storage system size.

Figure 6.32 shows the effect of reducing the repair interval on a system ten times the size
of our current system. To bring the outage down to a comparable level, the repair interval has to be
2 days—the operator comes in three times as often.

However, with an arrangement similar to the one proposed in Section 6.3.4, we can reduce
the operator cost without compromising reliability. For instance, with one-day intervals on a tenfold
system, 38% of the days have one or more failure. If the operator carries a pager and only comes in
when the system had a failure in the previous 24 hours, this person only needs to actually make a
visit 2.7 days per week.

Figure 6.33 shows how reducing the number of disks per striped set will help. By not
using any striping, the outage can be reduced to about twice that of the current system. However,
the burden of maintaining 5,120 one-disk filesystems would be great.
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Figure 6.31: Increasing the total system size
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6.3.12 99.999% or 99.9999% Availability

“What will it take to build a system with 99.999% availability given the current component failure
rates? What about 99.9999%”

Some commercial systems boast “five nines”, i.e., 99.999% availability. What will it take
to build such a system using only commodity components? What about “six nines”, i.e., 99.9999%
availability?

99.999% availability only allows 0.09 hours, or 5 minutes, of downtime per year, and
99.9999% allows 0.009 hours, or 30 seconds. We need to reduce our downtime by a factor of 10
or 100 to obtain this. From previous discussions, it is clear that the only options available are to
increase the number of mirrored copies of data or decreasing the repair interval.

With current failure rates and configurations, a 3-way mirror will accomplish the task
quite easily. In fact, with a 3-way mirror, my simulator detected only 66 hours of outage in 100,000
years, or 2.4 seconds of downtime per year, which translates to 99.999992% availability. A 3-way
mirror incurs a 50% capacity penalty.

The other option, reducing the repair interval, can get us to 99.999% with a two-day repair
interval. As for 99.9999%, we can obtain that goal with an 18-hour repair interval as mentioned in
Section 6.3.4.
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6.4 Summary

I have implemented a event-driven simulator which constructs a DAG to represent the
system and simulates its behavior efficiently. Using this simulator, and a random event generator
based on the data I collected in Chapter 5, I evaluated the availability of our system and explored
the design space.

These are the key discoveries presented in this chapter.

� Our system appears to work very well under the observed failure rates. To put things in per-
spective, we had three campus-wide power failures or network outages in the past 12 months,
resulting in more than twenty hours of disconnection from the outside world. Compared to
these, the 1 hour per year outage rate of our system is miniscule.

� Of all component reliabilities, the SCSI disk failure rate has the greatest effect on system
reliability, with system reliability being a near linear function of SCSI disk reliability. This
result is positive, as we want the system availability to be a function of the storage itself, and
not some less visible component.

� SCSI disk reliability dominates because double-ending effectively masks failures of every-
thing else by providing extra connectivity. Without double-ending, the system’s reliability
suffers and the system is much more sensitive to component failure rates.

� Without mirroring data, the system will be very unreliable. On the other hand, adding the
third mirrored copy of all data will make it virtually unbreakable.

� Adding more PCs, and thus more connectivity, to the system, does not affect the overall
system reliability much. The reason is because while more PCs will cause less disks to be
affected if one of them is disconnected, the extra PCs will increase the chance that one or
more of them is down at any given moment.

� It is possible to construct a system ten times the size of ours using the same equipment and
with similar reliability measures by increasing the number of mirrors of data, reducing the
numbers of disks per striped set, or reducing the repair interval.

� It is possible to increase the system availability to 99.999% by increasing the number of mir-
rors of data or reducing the repair interval. To improve it to 99.9999%, the only option is to
increase the number of mirrors of data or further reducing the repair interval. However, as
mentioned in Section 6.3.4, it could be possible to reduce the repair interval without increas-
ing the operator cost too much.
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Chapter 7

Conclusion

7.1 Results

In this dissertation, I presented the following:

� The design of a large storage system built using commodity components only

� An application and modifications to the operating system we made to make it self-maintaining
and run almost unattended

� An analysis of various methods to reduce system administration cost of large storage systems

� A catalog of components failures we observed over two years the prototype has been in oper-
ation

� An evaluation of the reliability of our design by simulation and exploration of the design
space

7.2 Contributions

In summary, these are the contributions of this research:

� Demonstration of construction of self-maintaining Internet service—both via experiment on
our constructed system and via simulation—with much lower system administration cost, and
much lower hardware costs

� Showing mirroring level, disk reliability, and repair time are the three key parameters in
constructing highly available large scale storage servers with enough internal connectivity

� Observations on how to architect a system so that it can be highly available yet be largely
insensitive to reliability of hidden infrastructure components

� Use of DAG to represent system to simplify simulation of availability

� Recording failures and repairs of a large system over two years to provide parameters to an
availability simulator
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7.3 What We Would Have Done Differently

There were several design choices we made when we drafted the initial design of our
system. Some of them were forced by circumstances, as other alternatives were not readily available
at that time, while some were our conscious decision. This section will summarize those and explore
other possibilities to evaluate if we would build a system differently if we were to design it again
today.

7.3.1 Disk Interface

At the beginning of the project, we had only one choice for the disk interface, single-
ended SCSI. Newer and better standards, such as differential SCSI, SSA and FC-AL were released
but components supporting those standards had not yet reached “commodity” level.

In three years, the landscape has changed significantly. SSA merged into FC-AL, but the
joined standard has not yet reached commodity status. IDE, which was once the low-end of disk
drives, has made leaps and bounds in terms of reliability and especially performance. However, IDE
still has a two-disk-per-cable restriction. Unless we are going to a design with significantly fewer
disk drives per PC, IDE is not yet a viable solution.

As for SCSI, LVD (“low-voltage differential”) disks have become widespread in the last
couple of years. LVD combines the benefits of differential SCSI and a lower signal voltage to
achieve an even higher bus speed of up to 80MHz, which can transfer up to 160MB/s on a 16-
bit cable, with a bus that is much more electrically stable than the original single-ended SCSI bus
running at 20MHz.

Given that we had a fair number of problems with SCSI enclosure and cable integrity,
LVD-SCSI equipment, the current standard on the market, would be a better choice today.

7.3.2 Disk Purchases

During the course of the project, our department suffered two massive failures on de-
partmental fileservers despite them having RAID-5 protection. One of them was caused by disk
firmware bugs. Apparently the particular revision of firmware on the disks had a problem that will
manifest itself while doing a RAID-5 reconstruction. Thus, when one of the disk failed and the
automatic recovery process started, the entire array was lost.

Although we have not had such catastrophic failures, we had our share of disk firmware
problems as mentioned in Section 5.3.3. I have also personally experienced disk problems related
to firmware on SCSI disks I own—I had to upgrade some of them to make the disks work reliably.

The biggest issue with disk firmware problems is that they often will not show up immediately—
sometimes they will not appear until the most inopportune moment, such as RAID-5 reconstruction
on our departmental fileserver. Unfortunately, those are often also times of emergency, with the
system’s vulnerability is already high.

In order to safeguard against such problems, with a system like ours, it might be a good
idea to use disks of different brands. For instance, if we purchase disks from two manufacturers,
use the same disks to construct a striped set and make sure the two mirrored copies of data reside on
disks from different manufacturers, we will be able to survive a catastrophic failure caused by disk
firmware problems.
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7.3.3 Disk Enclosures

By far the hardest part of setting up the system initially was dealing with disk enclosures.
There were numerous problems with them, including SCSI backplane integrity problems, missing
cables, wrong type of mounting rails, and so on.

After sending almost half of them back to the manufacturer for repair, the enclosures
have been working reasonably well, with only three additional failures in two years. However, my
experience shows that moving the enclosures will sometimes cause them to stop working, and we
have been unable to move the Tertiary Disk prototype to another location because of that reason.

However, I am not sure if we could have done anything differently with regards to disk
enclosures. We have tested several of the enclosures before ordering them in full—in fact, the ones
we initially tested are still working fine to this day onstampede , our file server, without any SCSI
bus integrity related problems. The manufacturer apparently changed something with their design
between those and the ones we got in large quantity, and that caused the problem. As disk enclosures
are relatively low-volume products, these change of designs are fairly frequent and there is little a
purchaser can do about it, except checking references of the manufacturer.

In another note, as mentioned in Section 1.3.3, many newer disk enclosures have envi-
ronmental monitoring systems called SCSI Environmental Services (SES) which can be accessed
through the SCSI bus. To build a self-maintaining storage system, SES will be very useful.

7.3.4 PC Cases

We used ordinary computer cases for our PCs. In fact, these are “ordinary” PCs in the
truest form of the word—they were part of a large donation to the department and most of the others
went into graduate students’ offices. There are two problems with them.

The first problem is that they are not very space-efficient. For our system, we did not need
many PCs so it wasn’t a big problem, but if the PC to disk ratio is higher, the space inefficiency will
be a serious issue.

The second problem is that they are not very easy to handle, as these PCs are designed to
be used in ordinary offices, and not to be installed in machine-room racks. The operator’s job was
made much harder when there was a repair that involves changing a component inside one of the
PCs.

Both problems can be solved by using rack-mount PC cases. Although these cases are
more expensive than ordinary PC cases—rack-mount PC cases cost about $250 while ordinary
cases cost $50 to $100—the reduction in space and operator burden should more than make up for
the cost increase.

7.4 Future Work

There are some issues that have not been fully resolved in our system. This section will
list two of those and suggest future directions for potentially interesting research.
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7.4.1 Completion

Some of the improvements listed in this dissertation, such as bypassing the BIOS dur-
ing booting and a PC automatically taking over for its double-ended companion, are not fully im-
plemented. Some of these should be completed before the system can be considered truly self-
maintaining.

7.4.2 Design Parameters

The experimentation with different design parameters are truly hypothetical at this point.
For instance, we have argued that one part-time operator can maintain a 5,000-disk system without
much difficulty. However, that analysis was based on extrapolation only, assuming the difficulty
of tasks will increase proportionally with the system size. Such assumptions are not always true,
as there are other factors, such as psychological effects the system size has on the operator, the
likelihood of the operator getting confused about which part of the system needs repair, that can not
be measured without extensive research in those areas.
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